31 research outputs found

    Mitogen-activated protein/extracellular signal-regulated kinase kinase 1act/tubulin interaction is an important determinant of mitotic stability in cultured HT1080 human fibrosarcoma cells.

    Get PDF
    Activation of the mitogen-activated protein kinase (MAPK) pathway plays a major role in neoplastic cell transformation. Using a proteomics approach, we identified alpha tubulin and beta tubulin as proteins that interact with activated MAP/extracellular signal-regulated kinase kinase 1 (MEK1), a central MAPK regulatory kinase. Confocal analysis revealed spatiotemporal control of MEK1-tubulin colocalization that was most prominent in the mitotic spindle apparatus in variant HT1080 human fibrosarcoma cells. Peptide arrays identified the critical role of positively charged amino acids R108, R113, R160, and K157 on the surface of MEK1 for tubulin interaction. Overexpression of activated MEK1 caused defects in spindle arrangement, chromosome segregation, and ploidy. In contrast, chromosome polyploidy was reduced in the presence of an activated MEK1 mutant (R108A, R113A) that disrupted interactions with tubulin. Our findings indicate the importance of signaling by activated MEK1-tubulin in spindle organization and chromosomal instability

    A novel rapid method for detection of PCR products

    No full text

    Proteasomal Inhibition Attenuates Transcriptional Activity of Hypoxia-Inducible Factor 1 (HIF-1) via Specific Effect on the HIF-1α C-Terminal Activation Domain

    No full text
    The ubiquitin-proteasome pathway (UPP) is involved in regulation of multiple cellular processes. Hypoxia-inducible factor 1α (HIF-1α) is a prototypic target of the UPP and, as such, is stabilized under conditions of proteasomal inhibition. Using carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) expression as paradigmatic markers of HIF-1 activity, we found that proteasomal inhibitors (PI) abrogated hypoxia-induced CAIX expression in all cell lines tested and VEGF expression in two out of three. Mapping of the inhibitory effect identified the C-terminal activation domain (CAD) of HIF-1α as the primary target of PI. PI specifically inhibited the HIF-1α CAD despite activating the HIF-1α coactivator p300 and another p300 cysteine/histidine-rich domain 1-dependent transcription factor, STAT-2. Coimmunoprecipitation and glutathione S-transferase pull downs indicated that PI does not disrupt interactions between HIF-1α and p300. Mutational analysis failed to confirm involvement of sites of known or putative posttranslational modifications in regulation of HIF-1α CAD function by PI. Our data provide evidence for the counterintuitive hypothesis that inhibition of HIF-1 function could be responsible for at least some of the antitumor effects of proteasomal inhibition. Further studies of the mechanism of the PI-induced attenuation of HIF-1α will provide important, potentially novel insight into regulation of HIF-1 activity and possibly identify new targets for HIF-directed therapy
    corecore