8 research outputs found

    Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs)

    Get PDF
    Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMP).BackgroundThree members of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of proteins have recently been shown to bind and activate specific promatrix metalloproteinases (MMPs) and to overcome the inhibition of tissue inhibitors of MMPs (TIMPs). Although usually associated with mineralized tissues, we have shown that the SIBLINGs and their MMP partners, when known, are coexpressed in salivary gland ductal cells. The present study examined the expression patterns of both the SIBLINGs and their MMP partners in adult kidney.MethodsThe expression patterns of all five SIBLINGs known to date, and their MMP partners were determined in monkey kidney using immunohistochemistry and in situ hybridization techniques.ResultsBone sialoprotein (BSP) and its partner, MMP-2, were coexpressed in both the proximal and distal tubules. Osteopontin, as previously shown, was expressed in the distal tubules while its partner MMP-3 was expressed in both the proximal tubule and distal tubles. Dentin matrix protein-1 (DMP1) and MMP-9 were coexpressed throughout the nephron, including both parietal cells of Bowman's capsule and the thin limb of the loop of Henle. Dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE) were expressed in the proximal tubule and distal tubule, and proximal tubule, respectively.ConclusionIn contrast to salivary gland in which all SIBLINGs and their MMP partners were coexpressed throughout the length of the ducts, these proteins were differentially expressed within the normal adult nephron. We hypothesize that the cells use the SIBLING/MMP pairs in the normal turnover of cell surface proteins and/or pericellular matrix proteins such as those in basement membranes

    NOMA: A Preventable “Scourge” of African Children

    Get PDF
    Noma is a serious orofacial gangrene originating intraorally in the gingival-oral mucosa complex before spreading extraorally to produce a visibly destructive ulcer. Although cases of noma are now rarely reported in the developed countries, it is still prevalent among children in third world countries, notably in sub-Sahara Africa, where poverty, ignorance, malnutrition, and preventable childhood infections are still common. This review summarizes historical, epidemiological, management, and research updates on noma with suggestions for its prevention and ultimate global eradication. The global annual incidence remains high at about 140,000 cases, with a mortality rate exceeding 90% for untreated diseases. Where the patients survive, noma defects result in unsightly facial disfigurement, intense scarring, trismus, oral incompetence, and social alienation. Although the etiology has long been held to be infectious, a definitive causal role between microorganisms cited, and noma has been difficult to establish. The management of noma with active disease requires antibiotics followed by reconstructive surgery. Current research efforts are focused towards a comprehensive understanding of the epidemiology, and further elucidation of the microbiology and pathogenesis of noma

    Effects of DSPP and MMP20 Silencing on Adhesion, Metastasis, Angiogenesis, and Epithelial-Mesenchymal Transition Proteins in Oral Squamous Cell Carcinoma Cells

    No full text
    Recent reports highlight the potential tumorigenic role of Dentin Sialophosphoprotein (DSPP) and its cognate partner Matrix Metalloproteinase 20 (MMP-20) in Oral Squamous Cell Carcinomas (OSCCs). However, the function/mechanism of these roles is yet to be fully established. The present study aimed to investigate the effects of DSPP and MMP20 silencing on specific proteins involved in oral cancer cell adhesion, angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). Stable lines of DSPP/MMP20 silenced OSCC cell line (OSC2), previously established via lentiviral-mediated shRNA transduction, were analyzed for the effects of DSPP, MMP20, and combined DSPP–MMP20 silencing on MMP2, MMP9, integrins αvβ3 and αvβ6, VEGF, Kallikerin- 4,-5,-8,-10, E-cadherin, N-cadherin, Vimentin, met, src, snail, and Twist by Western blot. Results show a significant decrease (p < 0.05) in the expression of MMP2, MMP9, integrin αvβ3, αvβ6, VEGF, Kallikerins -4, -5, -8, -10, N-cadherin, vimentin met, src, snail and twist following DSPP and MMP20 silencing, individually and in combination. On the other hand, the expression of E-cadherin was found to be significantly increased (p < 0.05). These results suggest that the tumorigenic effect of DSPP and MMP20 on OSC2 cells is mediated via the upregulation of the genes involved in invasion, metastasis, angiogenesis, and epithelial-mesenchymal transition (EMT)

    Development and Validation of a Combined Hypoxia and Immune Prognostic Classifier for Head and Neck Cancer.

    Get PDF
    PURPOSE Intratumoral hypoxia and immunity have been correlated with patient outcome in various tumor settings. However, these factors are not currently considered for treatment selection in head and neck cancer (HNC) due to lack of validated biomarkers. Here we sought to develop a hypoxia-immune classifier with potential application in patient prognostication and prediction of response to targeted therapy. EXPERIMENTAL DESIGN A 54-gene hypoxia-immune signature was constructed on the basis of literature review. Gene expression was analyzed using the The Cancer Genome Atlas (TCGA) HNC dataset ( = 275) and validated using two independent cohorts ( = 130 and 123). IHC was used to investigate the utility of a simplified protein signature. The spatial distribution of hypoxia and immune markers was examined using multiplex immunofluorescence staining. RESULTS Unsupervised hierarchical clustering of TCGA dataset (development cohort) identified three patient subgroups with distinct hypoxia-immune phenotypes and survival profiles: hypoxia/immune, hypoxia/immune, and mixed, with 5-year overall survival (OS) rates of 71%, 51%, and 49%, respectively ( = 0.0015). The prognostic relevance of the hypoxia-immune gene signature was replicated in two independent validation cohorts. Only PD-L1 and intratumoral CD3 protein expression were associated with improved OS on multivariate analysis. Hypoxia/immune and hypoxia/immune tumors were overrepresented in "inflamed" and "immune-desert" microenvironmental profiles, respectively. Multiplex staining demonstrated an inverse correlation between CA-IX expression and prevalence of intratumoral CD3 T cells ( = -0.5464; = 0.0377), further corroborating the transcription-based classification. CONCLUSIONS We developed and validated a hypoxia-immune prognostic transcriptional classifier, which may have clinical application to guide the use of hypoxia modification and targeted immunotherapies for the treatment of HNC
    corecore