32 research outputs found

    Integrated framework of the immune-defense transcriptional signatures in the arabidopsis shoot apical meristem

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The growing tips of plants grow sterile; therefore, disease-free plants can be generated from them. How plants safeguard growing apices from pathogen infection is still a mystery. The shoot apical meristem (SAM) is one of the three stem cells niches that give rise to the above ground plant organs. This is very well explored; however, how signaling networks orchestrate immune responses against pathogen infections in the SAM remains unclear. To reconstruct a transcriptional framework of the differentially expressed genes (DEGs) pertaining to various SAM cellular populations, we acquired large-scale transcriptome datasets from the public repository Gene Expression Omnibus (GEO). We identify here distinct sets of genes for various SAM cellular populations that are enriched in immune functions, such as immune defense, pathogen infection, biotic stress, and response to salicylic acid and jasmonic acid and their biosynthetic pathways in the SAM. We further linked those immune genes to their respective proteins and identify interactions among them by mapping a transcriptome-guided SAM-interactome. Furthermore, we compared stem-cells regulated transcriptome with innate immune responses in plants showing transcriptional separation among their DEGs in Arabidopsis. Besides unleashing a repertoire of immune-related genes in the SAM, our analysis provides a SAM-interactome that will help the community in designing functional experiments to study the specific defense dynamics of the SAM-cellular populations. Moreover, our study promotes the essence of large-scale omics data re-analysis, allowing a fresh look at the SAM-cellular transcriptome repurposing data-sets for new questions

    Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis

    Get PDF
    The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell–cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors

    Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis

    Get PDF
    The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell–cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors

    Analysis of Regulatory Networks during Cell Differentiation and in Infection Biology

    No full text
    Das zentrale Paradigma der Systembiologie zielt auf ein möglichst umfassendes Ver-ständnis der komplexen Zusammenhänge biologischer Systeme. Die in dieser Arbeit angewandten Methoden folgen diesem Grundsatz. Am Beispiel von drei auf Basis von Datenbanken und aktueller Literatur rekonstruier-ten Netzwerkmodellen konnte in der hier vorliegenden Arbeit die Gültigkeit analyti-scher und prädiktiver Algorithmen nachgewiesen werden, die in Form der Analy-sesoftware Jimena angewandt wurden. Die daraus resultierenden Ergebnisse sowohl für die Berechnung von stabilen Systemzuständen, der dynamischen Simulation, als auch der Identifikation zentraler Kontrollknoten konnten experimentell validiert wer-den. Die Ergebnisse wurden in einem iterativen Prozess verwendet werden um das entsprechende Netzwerkmodell zu optimieren. Beim Vergleich des Verhaltens des semiquantitativ ausgewerteten regulatorischen Netzwerks zur Kontrolle der Differenzierung humaner mesenchymaler Stammzellen in Chondrozyten (Knorpelbildung), Osteoblasten (Knochenbildung) und Adipozyten (Fett-zellbildung) konnten 12 wichtige Faktoren (darunter: RUNX2, OSX/SP7, SOX9, TP53) mit Hilfe der Berechnung der Bedeutung (Kontrollzentralität der Netzwerkknoten identifi-ziert werden). Der Abgleich des simulierten Verhaltens dieses Netzwerkes ergab eine Übereinstimmung mit experimentellen Daten von 47,2%, bei einem widersprüchlichen Verhalten von ca. 25%, dass unter anderem durch die temporäre Natur experimentel-ler Messungen im Vergleich zu den terminalen Bedingungen des Berechnung der stabilen Systemzustände erklärt werden kann. Bei der Analyse des Netzwerkmodells der menschlichen Immunantwort auf eine Infek-tion durch A. fumigatus konnten vier Hauptregulatoren identifiziert werden (A. fumi-gatus, Blutplättchen, hier Platelets genannt, und TNF), die im Zusammenspiel mit wei-teren Faktoren mit hohen Zentralitätswerten (CCL5, IL1, IL6, Dectin-1, TLR2 und TLR4) fähig sind das gesamte Netzwerkverhalten zu beeinflussen. Es konnte gezeigt werden, dass sich das Aktivitätsverhalten von IL6 in Reaktion auf A. fumigatus und die regulato-rische Wirkung von Blutplättchen mit den entsprechenden experimentellen Resultaten deckt. Die Simulation, sowie die Berechnung der stabilen Systemzustände der Immunantwort von A. thaliana auf eine Infektion durch Pseudomonas syringae konnte zeigen, dass die in silico Ergebnisse mit den experimentellen Ergebnissen übereinstimmen. Zusätzlich konnten mit Hilfe der Analyse der Zentralitätswerte des Netzwerkmodells fünf Master-regulatoren identifiziert werden: TGA Transkriptionsfaktor, Jasmonsäure, Ent-Kaurenoate-Oxidase, Ent-kaurene-Synthase und Aspartat-Semialdehyd-Dehydrogenase. Während die ersteren beiden bereits lange als wichtige Regulatoren für die Gib-berellin-Synthese bekannt sind, ist die immunregulatorische Funktion von Aspartat-Semialdehyd-Dehydrogenase bisher weitgehend unbekannt.The central paradigm of systems biology aims at a comprehensive understanding in complex relationships of biological systems. The methods used in this work support this aim. By the example of three network models reconstructed on the basis of databases and current literature, the validity of analytical and predictive algorithms could be demon-strated in this work. As simulation software the framework Jimena was applied. The results for the calculation of stable system states, the dynamic simulation as well as the identification of central control nodes could be validated experimentally. The re-sults were used in an iterative process to further optimize the corresponding network model. Comparing the behavior of the semi-quantitatively evaluated regulatory network to control the differentiation of human mesenchymal stem cells into chondrocytes (carti-lage formation), osteoblasts (bone formation) and adipocytes (fatty cell formation), 12 important factors (including: RUNX2, OSX/SP7, SOX9, TP53) could be identified by the calculation of the control centralities of the network nodes. The comparison of the simulated behavior of these nodes showed an agreement with experimental data of 47.2%. We found a contradictory behavior of approximately 25%. Differing results can be explained due to the temporary nature of experimental measurements compared to the terminal conditions of the calculation the stable system states. Analyzing the network model of the human immune response to A. fumigatus infec-tion, four major regulators could be identified (A. fumigatus, platelets, and TNF), which interact with other factors with high control centrality values (CCL5, IL1, IL6, Dectin1). TLR2 and TLR4) are capable of affecting the overall network behavior. It could be shown that the activity behavior of IL6 in response to the modular activity of the plate-lets as well as A. fumigatus coincides with the corresponding experimental results. The simulation, as well as the calculation of the stable system states of the immune response of A. thaliana to an infection by Pseudomonas syringae, showed that in silico results are in agreement with the experimental results. By analyzing the control cen-trality values of the network model, five main regulators could be: TGA transcription factor, jasmonic acid, ent-kaurene-Oxidase, ent-kaurene synthase and aspartate semi-aldehyde. While the former two have long been recognized as important regulators of gibberel-lin synthesis, the immunoregulatory function of aspartate semialdehyde dehydrogen-ase has been largely unknown

    Microscopy, Image Processing and Automization of Analysis of Vesicles in C.C. eleganselegans and other biological Structures

    No full text
    Thema dieser Thesis ist die Analyse sekretorischer Vesikelpools auf Ultrastrukturebene in unterschiedlichen biologischen Systemen. Der erste und zweite Teil dieser Arbeit fokussiert sich auf die Analyse synaptischer Vesikelpools in neuromuskulären Endplatten (NME) im Modellorganismus Caenorhabditis elegans. Dazu wurde Hochdruckgefrierung und Gefriersubstitution angewandt, um eine unverzügliche Immobilisation der Nematoden und somit eine Fixierung im nahezu nativen Zustand zu gewährleisten. Anschließend wurden dreidimensionale Aufnahmen der NME mittels Elektronentomographie erstellt. Im ersten Teil dieser Arbeit wurden junge adulte, wildtypische C. elegans Hermaphroditen mit Septin-Mutanten verglichen. Um eine umfassende Analyse mit hoher Stichprobenzahl zu ermöglichen und eine automatisierte Lösung für ähnliche Untersuchungen von Vesikelpools bereit zu stellen wurde eine Software namens 3D ART VeSElecT zur automatisierten Vesikelpoolanalyse entwickelt. Die Software besteht aus zwei Makros für ImageJ, eines für die Registrierung der Vesikel und eines zur Charakterisierung. Diese Trennung in zwei separate Schritte ermöglicht einen manuellen Verbesserungsschritt zum Entfernen falsch positiver Vesikel. Durch einen Vergleich mit manuell ausgewerteten Daten neuromuskulärer Endplatten von larvalen Stadien des Modellorganismus Zebrafisch (Danio rerio) konnte erfolgreich die Funktionalität der Software bewiesen werden. Die Analyse der neuromuskulären Endplatten in C. elegans ergab kleinere synaptische Vesikel und dichtere Vesikelpools in den Septin-Mutanten verglichen mit Wildtypen. Im zweiten Teil der Arbeit wurden neuromuskulärer Endplatten junger adulter C. elegans Hermaphroditen mit Dauerlarven verglichen. Das Dauerlarvenstadium ist ein spezielles Stadium, welches durch widrige Umweltbedingungen induziert wird und in dem C. elegans über mehrere Monate ohne Nahrungsaufnahme überleben kann. Da hier der Vergleich der Abundanz zweier Vesikelarten, der „clear-core“-Vesikel (CCV) und der „dense-core“-Vesikel (DCV), im Fokus stand wurde eine Erweiterung von 3D ART VeSElecT entwickelt, die einen „Machine-Learning“-Algorithmus zur automatisierten Klassifikation der Vesikel integriert. Durch die Analyse konnten kleinere Vesikel, eine erhöhte Anzahl von „dense-core“-Vesikeln, sowie eine veränderte Lokalisation der DCV in Dauerlarven festgestellt werden. Im dritten Teil dieser Arbeit wurde untersucht ob die für synaptische Vesikelpools konzipierte Software auch zur Analyse sekretorischer Vesikel in Thrombozyten geeignet ist. Dazu wurden zweidimensionale und dreidimensionale Aufnahmen am Transmissionselektronenmikroskop erstellt und verglichen. Die Untersuchung ergab, dass hierfür eine neue Methodik entwickelt werden muss, die zwar auf den vorherigen Arbeiten prinzipiell aufbauen kann, aber den besonderen Herausforderungen der Bilderkennung sekretorischer Vesikel aus Thrombozyten gerecht werden muss.Subject of this thesis was the analysis of the ultrastructure of vesicle pools in various biological systems. The first and second part of this thesis is focused on the analysis of synaptic vesicle pools in neuromuscular junctions in the model organism Caenorhabditis elegans. In order to get access of synaptic vesicle pools in their near-to native state high-pressure freezing and freeze substitution was performed. Subsequently three-dimensional imaging of neuromuscular junctions using electron tomography was performed. In the first part young adult wild-type C. elegans hermaphrodites and septin mutants were compared. To enable extensive analysis and to provide an automated solution for comparable studies, a software called 3D ART VeSElecT for automated vesicle pool analysis, was developed. The software is designed as two macros for ImageJ, one for registration of vesicles and one for characterization. This separation allows for a manual revision step in between to erase false positive particles. Through comparison with manually evaluated data of neuromuscular junctions of larval stages of the model organism zebrafish (Danio rerio), functionality of the software was successfully proved. As a result, analysis of C. elegans neuromuscular junctions revealed smaller synaptic vesicles and more densely packed vesicle pools in septin mutants compared to wild-types. In the second part of this thesis NMJs of young adult C. elegans hermaphrodites were compared with dauer larvae. The dauer larva is a special state that is induced by adverse environmental conditions and enables C. elegans to survive several months without any foot uptake. Aiming for an automated analysis of the ratio of two vesicle types, clear core vesicles (CCVs) and dense core vesicles (DCVs), an extension for 3D ART VeSElecT was developed, integrating a machine-learning classifier. As a result, smaller vesicles and an increased amount of dense core vesicles in dauer larvae were found. In the third part of this thesis the developed software, designed for the analysis of synaptic vesicle pools, was checked for its suitability to recognize secretory vesicles in thrombocytes. Therefore, two-dimensional and three-dimensional transmission electron microscopic images were prepared and compared. The investigation has shown that a new methodology has to be developed which, although able to build on the previous work in principle, must meet the special challenges of image recognition of secretory vesicles from platelets

    Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    No full text
    Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP), amino-acid sequence WRKYGQK (WRKY), myelocytomatosis related proteins (MYC), myeloblastosis related proteins (MYB), APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP) and no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC) (NAC). We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses

    Fiji macro 3D ART VeSElecT: 3D automated reconstruction tool for vesicle structures of electron tomograms

    No full text
    Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation. Both automatic and semi-automatic modes are explained including a tutorial

    Automated classification of synaptic vesicles in electron tomograms of C. elegans using machine learning

    No full text
    Synaptic vesicles (SVs) are a key component of neuronal signaling and fulfil different roles depending on their composition. In electron micrograms of neurites, two types of vesicles can be distinguished by morphological criteria, the classical “clear core” vesicles (CCV) and the typically larger “dense core” vesicles (DCV), with differences in electron density due to their diverse cargos. Compared to CCVs, the precise function of DCVs is less defined. DCVs are known to store neuropeptides, which function as neuronal messengers and modulators [1]. In C. elegans, they play a role in locomotion, dauer formation, egg-laying, and mechano- and chemosensation [2]. Another type of DCVs, also referred to as granulated vesicles, are known to transport Bassoon, Piccolo and further constituents of the presynaptic density in the center of the active zone (AZ), and therefore are important for synaptogenesis [3]. To better understand the role of different types of SVs, we present here a new automated approach to classify vesicles. We combine machine learning with an extension of our previously developed vesicle segmentation workflow, the ImageJ macro 3D ART VeSElecT. With that we reliably distinguish CCVs and DCVs in electron tomograms of C. elegans NMJs using image-based features. Analysis of the underlying ground truth data shows an increased fraction of DCVs as well as a higher mean distance between DCVs and AZs in dauer larvae compared to young adult hermaphrodites. Our machine learning based tools are adaptable and can be applied to study properties of different synaptic vesicle pools in electron tomograms of diverse model organisms
    corecore