44 research outputs found

    “How Is My Child’s Asthma?” Digital Phenotype and Actionable Insights for Pediatric Asthma

    Get PDF
    Background: In the traditional asthma management protocol, a child meets with a clinician infrequently, once in 3 to 6 months, and is assessed using the Asthma Control Test questionnaire. This information is inadequate for timely determination of asthma control, compliance, precise diagnosis of the cause, and assessing the effectiveness of the treatment plan. The continuous monitoring and improved tracking of the child’s symptoms, activities, sleep, and treatment adherence can allow precise determination of asthma triggers and a reliable assessment of medication compliance and effectiveness. Digital phenotyping refers to moment-by-moment quantification of the individual-level human phenotype in situ using data from personal digital devices, in particular, mobile phones. The kHealth kit consists of a mobile app, provided on an Android tablet, that asks timely and contextually relevant questions related to asthma symptoms, medication intake, reduced activity because of symptoms, and nighttime awakenings; a Fitbit to monitor activity and sleep; a Microlife Peak Flow Meter to monitor the peak expiratory flow and forced exhaled volume in 1 second; and a Foobot to monitor indoor air quality. The kHealth cloud stores personal health data and environmental data collected using Web services. The kHealth Dashboard interactively visualizes the collected data. Objective: The objective of this study was to discuss the usability and feasibility of collecting clinically relevant data to help clinicians diagnose or intervene in a child’s care plan by using the kHealth system for continuous and comprehensive monitoring of child’s symptoms, activity, sleep pattern, environmental triggers, and compliance. The kHealth system helps in deriving actionable insights to help manage asthma at both the personal and cohort levels. The Digital Phenotype Score and Controller Compliance Score introduced in the study are the basis of ongoing work on addressing personalized asthma care and answer questions such as, “How can I help my child better adhere to care instructions and reduce future exacerbation?” Methods: The Digital Phenotype Score and Controller Compliance Score summarize the child’s condition from the data collected using the kHealth kit to provide actionable insights. The Digital Phenotype Score formalizes the asthma control level using data about symptoms, rescue medication usage, activity level, and sleep pattern. The Compliance Score captures how well the child is complying with the treatment protocol. We monitored and analyzed data for 95 children, each recruited for a 1- or 3-month-long study. The Asthma Control Test scores obtained from the medical records of 57 children were used to validate the asthma control levels calculated using the Digital Phenotype Scores. Results: At the cohort level, we found asthma was very poorly controlled in 37% (30/82) of the children, not well controlled in 26% (21/82), and well controlled in 38% (31/82). Among the very poorly controlled children (n=30), we found 30% (9/30) were highly compliant toward their controller medication intake—suggesting a re-evaluation for change in medication or dosage—whereas 50% (15/30) were poorly compliant and candidates for a more timely intervention to improve compliance to mitigate their situation. We observed a negative Kendall Tau correlation between Asthma Control Test scores and Digital Phenotype Score as −0.509 (P\u3c.01). Conclusions: kHealth kit is suitable for the collection of clinically relevant information from pediatric patients. Furthermore, Digital Phenotype Score and Controller Compliance Score, computed based on the continuous digital monitoring, provide the clinician with timely and detailed evidence of a child’s asthma-related condition when compared with the Asthma Control Test scores taken infrequently during clinic visits

    Determination of Personalized Asthma Triggers From Multimodal Sensing and a Mobile App: Observational Study

    Get PDF
    Background: Asthma is a chronic pulmonary disease with multiple triggers. It can be managed by strict adherence to an asthma care plan and by avoiding these triggers. Clinicians cannot continuously monitor their patients’ environment and their adherence to an asthma care plan, which poses a significant challenge for asthma management. Objective: In this study, pediatric patients were continuously monitored using low-cost sensors to collect asthma-relevant information. The objective of this study was to assess whether kHealth kit, which contains low-cost sensors, can identify personalized triggers and provide actionable insights to clinicians for the development of a tailored asthma care plan. Methods: The kHealth asthma kit was developed to continuously track the symptoms of asthma in pediatric patients and monitor the patients’ environment and adherence to their care plan for either 1 or 3 months. The kit consists of an Android app–based questionnaire to collect information on asthma symptoms and medication intake, Fitbit to track sleep and activity, the Peak Flow meter to monitor lung functions, and Foobot to monitor indoor air quality. The data on the patient’s outdoor environment were collected using third-party Web services based on the patient’s zip code. To date, 107 patients consented to participate in the study and were recruited from the Dayton Children’s Hospital, of which 83 patients completed the study as instructed. Results: Patient-generated health data from the 83 patients who completed the study were included in the cohort-level analysis. Of the 19% (16/83) of patients deployed in spring, the symptoms of 63% (10/16) and 19% (3/16) of patients suggested pollen and particulate matter (PM2.5), respectively, to be their major asthma triggers. Of the 17% (14/83) of patients deployed in fall, symptoms of 29% (4/17) and 21% (3/17) of patients suggested pollen and PM2.5, respectively, to be their major triggers. Among the 28% (23/83) of patients deployed in winter, PM2.5 was identified as the major trigger for 83% (19/23) of patients. Similar correlations were not observed between asthma symptoms and factors such as ozone level, temperature, and humidity. Furthermore, 1 patient from each season was chosen to explain, in detail, his or her personalized triggers by observing temporal associations between triggers and asthma symptoms gathered using the kHealth asthma kit. Conclusions: The continuous monitoring of pediatric asthma patients using the kHealth asthma kit generates insights on the relationship between their asthma symptoms and triggers across different seasons. This can ultimately inform personalized asthma management and intervention plans

    A Study of Clinico Mycological Profile of Fungal Rhinosinusitis in a Hospital of Haryana

    No full text
    Background: To correlate clinical and culture results with histopathological findings of fungal rhinosinusitis in a hospital for accurate clinical classification of the disease. Materials and Methods: One-hundred suspected patients were included in the study. Data was collected in a brief predetermined format. Samples like nasal lavages, sinus secretions, and tissue specimens were processed and examined by microbiology culture. Slide culture was done to observe the microscopic morphology. Histopathological examination was done by H and E stain and PAS stain for classification. Results: Out of 100 cases of rhinosinusitis, 42 cases were culture-positive for fungal rhinosinusitis. On the basis of histopathological findings, 28 cases (66.66%) were found to be of non-invasive fungal rhinosinusitis. Aspergillus flavus was the most common fungal isolate. Conclusion: Mycological profile of rhinosinusitis in Haryana was thus evaluated. Histopathological and microbiological findings reported 42 cases of fungal rhinosinusitis among 100 suspected cases of rhinosinusitis

    “How Is My Child’s Asthma?” Digital Phenotype and Actionable Insights for Pediatric Asthma

    Get PDF
    Background: In the traditional asthma management protocol, a child meets with a clinician infrequently, once in 3 to 6 months, and is assessed using the Asthma Control Test questionnaire. This information is inadequate for timely determination of asthma control, compliance, precise diagnosis of the cause, and assessing the effectiveness of the treatment plan. The continuous monitoring and improved tracking of the child’s symptoms, activities, sleep, and treatment adherence can allow precise determination of asthma triggers and a reliable assessment of medication compliance and effectiveness. Digital phenotyping refers to moment-by-moment quantification of the individual-level human phenotype in situ using data from personal digital devices, in particular, mobile phones. The kHealth kit consists of a mobile app, provided on an Android tablet, that asks timely and contextually relevant questions related to asthma symptoms, medication intake, reduced activity because of symptoms, and nighttime awakenings; a Fitbit to monitor activity and sleep; a Microlife Peak Flow Meter to monitor the peak expiratory flow and forced exhaled volume in 1 second; and a Foobot to monitor indoor air quality. The kHealth cloud stores personal health data and environmental data collected using Web services. The kHealth Dashboard interactively visualizes the collected data. Objective: The objective of this study was to discuss the usability and feasibility of collecting clinically relevant data to help clinicians diagnose or intervene in a child’s care plan by using the kHealth system for continuous and comprehensive monitoring of child’s symptoms, activity, sleep pattern, environmental triggers, and compliance. The kHealth system helps in deriving actionable insights to help manage asthma at both the personal and cohort levels. The Digital Phenotype Score and Controller Compliance Score introduced in the study are the basis of ongoing work on addressing personalized asthma care and answer questions such as, “How can I help my child better adhere to care instructions and reduce future exacerbation?” Methods: The Digital Phenotype Score and Controller Compliance Score summarize the child’s condition from the data collected using the kHealth kit to provide actionable insights. The Digital Phenotype Score formalizes the asthma control level using data about symptoms, rescue medication usage, activity level, and sleep pattern. The Compliance Score captures how well the child is complying with the treatment protocol. We monitored and analyzed data for 95 children, each recruited for a 1- or 3-month-long study. The Asthma Control Test scores obtained from the medical records of 57 children were used to validate the asthma control levels calculated using the Digital Phenotype Scores. Results: At the cohort level, we found asthma was very poorly controlled in 37% (30/82) of the children, not well controlled in 26% (21/82), and well controlled in 38% (31/82). Among the very poorly controlled children (n=30), we found 30% (9/30) were highly compliant toward their controller medication intake—suggesting a re-evaluation for change in medication or dosage—whereas 50% (15/30) were poorly compliant and candidates for a more timely intervention to improve compliance to mitigate their situation. We observed a negative Kendall Tau correlation between Asthma Control Test scores and Digital Phenotype Score as −0.509 (P\u3c.01). Conclusions: kHealth kit is suitable for the collection of clinically relevant information from pediatric patients. Furthermore, Digital Phenotype Score and Controller Compliance Score, computed based on the continuous digital monitoring, provide the clinician with timely and detailed evidence of a child’s asthma-related condition when compared with the Asthma Control Test scores taken infrequently during clinic visits

    Knowledge-enabled Personalized Dashboard for Asthma Management in Children

    Get PDF
    Introduction: Childhood Asthma is a significant public health concern worldwide. Effective management of childhood asthma requires close monitoring of disease triggers, medication compliance and symptom control. The recent growth of the Internet of Things (IoT) based devices has enabled continuous monitoring of patients. kHealth-Asthma is a knowledge-enabled semantic framework consisting of IoT enabled sensors to record patient symptoms, medication usage and their environment. For each patient, 29 diverse parameters with 1852 data points are collected daily. kHealthDash platform enables real-time visual analysis at an individual and cohort level over such high volume, high variety data. Methods: The kHealth kit was given to 100 asthmatic children (5 to 17 years of age) for a period of one or three months each. The kit consists of an Android app-based questionnaire to record symptoms and medication usage, Fitbit to track activity and sleep, peak flow meter to measure PEF and FEV1, Foobot to monitor indoor air quality and web services to obtain outdoor environmental observations. Data collected are pushed to a private cloud storage in near real-time and visualized using kHealthDash. Five healthcare providers evaluated the effectiveness of kHealthDash by answering questions on data interpretation. Results: Providers reported that analyzing data with kHealthDash was 65% easier than using data in tabular format. The System Usability Score for kHealthDash is 80.5 (\u3e68.5 - threshold), implying that kHealthDash is a user-friendly interface. Conclusion: kHealthDash integrates and visualizes multimodal data and holds promise to aid the clinicians in better decision making for asthma management

    Personalized Bayesian Inference for Explainable Healthcare Management and Intervention

    Full text link
    Chronic healthcare conditions such as Asthma re- quires constant monitoring and managing of symptoms and their triggers for better quality of life. Each asthma patient reacts very differently to potential triggers. Hence, there is a need to develop a explainable personalized framework for each patient to capture susceptibility to asthma triggers. We developed a personalized knowledge-based probabilistic model to predict asthma exacerbation for different environmental factors utilizing patient generated health data from pediatric asthma patients. Further, the personalized model provides a metric, called Health Coefficient, to quantify the health of a patient for varying environmental factors. We demonstrate the predictive capabilities of the developed stochastic model and discuss its viability in managing asthma symptoms and opportunity for early clinical intervention
    corecore