12 research outputs found

    Evidence of EBV infection in lymphomas diagnosed in Lusaka, Zambia

    Get PDF
    Introduction: Epstein-Barr virus (EBV) is a ubiquitous virus that infects more than 90% of the world's population, and is implicated in lymphoma pathogenesis. However, in Zambia during the diagnosis of these lymphomas, the association of the virus with the lymphomas is not established. Since most patients with lymphomas have poor prognosis, the identification of the virus within the lymphoma lesion will allow for more targeted therapy. The aim of this study was to provide evidence of the presence of the EBV in lymphomas diagnosed at the University Teaching Hospital (UTH) in Lusaka, Zambia.Methods: one hundred and fifty archival formalin-fixed paraffin embedded suspected lymphoma tissues stored over a 4-year period in the Histopathology Laboratory at the UTH in Lusaka, Zambia, were analysed. Histological methods were used to identify the lymphomas, and the virus was detected using Polymerase Chain Reaction (PCR). Subtyping of the virus was achieved through DNA sequencing of the EBNA-2 region of the viral genome. Chi square or fisher's exact test was used to evaluate the association between EBV status, type of lymphoma and gender.Results: the majority of the lymphomas identified were non-Hodgkin's lymphoma (NHL) (80%) followed by Hodgkin's lymphoma (HL) (20%). EBV was detected in 51.8% of the cases, 54.5% of which were associated with NHL cases, while 40.9% associated with HL cases. The predominant subtype of the virus in both types of lymphomas was subtype 1. One of the lymphoma cases harboured both subtype 1 and 2 of the virus.Conclusion: this study showed that EBV is closely associated with lymphomas. Therefore, providing evidence of the presence of the virus in lymphoma tissues will aid in targeted therapy. To our knowledge this is the first time such data has been generated in Zambia

    Avian Influenza Viruses Detected in Birds in Sub-Saharan Africa: A Systematic Review

    No full text
    In the recent past, sub-Saharan Africa has not escaped the devastating effects of avian influenza virus (AIV) in poultry and wild birds. This systematic review describes the prevalence, spatiotemporal distribution, and virus subtypes detected in domestic and wild birds for the past two decades (2000–2019). We collected data from three electronic databases, PubMed, SpringerLink electronic journals and African Journals Online, using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol. A total of 1656 articles were reviewed, from which 68 were selected. An overall prevalence of 3.0% AIV in birds was observed. The prevalence varied between regions and ranged from 1.1% to 7.1%. The Kruskal–Wallis and Wilcoxon signed-rank sum test showed no significant difference in the prevalence of AIV across regions, χ2(3) = 5.237, p = 0.1553 and seasons, T = 820, z = −1.244, p = 0.2136. Nineteen hemagglutinin/neuraminidase subtype combinations were detected during the reviewed period, with southern Africa recording more diverse AIV subtypes than other regions. The most detected subtype was H5N1, followed by H9N2, H5N2, H5N8 and H6N2. Whilst these predominant subtypes were mostly detected in domestic poultry, H1N6, H3N6, H4N6, H4N8, H9N1 and H11N9 were exclusively detected in wild birds. Meanwhile, H5N1, H5N2 and H5N8 were detected in both wild and domestic birds suggesting circulation of these subtypes among wild and domestic birds. Our findings provide critical information on the eco-epidemiology of AIVs that can be used to improve surveillance strategies for the prevention and control of avian influenza in sub-Saharan Africa

    Leucocytosis and Asymptomatic Urinary Tract Infections in Sickle Cell Patients at a Tertiary Hospital in Zambia

    No full text
    Sickle cell anaemia (SCA) is an inherited disease resulting from mutations in the β-globin chain of adult haemoglobin that results in the formation of homozygous sickle haemoglobin. It is associated with several complications including an altered blood picture and damage in multiple organs, including the kidneys. Kidney disease is seen in most patients with SCA and may affect glomerular and/or tubular function, thereby putting these patients at risk of urinary tract infections. However, there is a paucity of data on the prevalence of urinary tract infections (UTIs) among SCA patients in Zambia. This study aimed to determine the prevalence of UTIs and haematological and kidney function profiles among SCA patients at the University Teaching Hospitals, Lusaka, Zambia. This was a cross-sectional study conducted between April and July 2019 involving 78 SCA patients who presented at the UTH. Blood and midstream urine samples were collected from each participant using the standard specimen collection procedures. Full blood counts and kidney function tests were determined using Sysmex XT-4000i haematology analyser and the Pentra C200 by Horiba, respectively. Bacterial profiles of the urine samples were determined using conventional microbiological methods. We found that all the measured patients’ haemoglobin (Hb) levels fell below the WHO-recommended reference range with a minimum of 5 g/dl, a maximum of 10.5 g/dl, and a mean of 8 ± 1 g/dl. Fifty percent of the participants had moderate anaemia, while the other 50% had severe anaemia. The minimum WBC count of the participants was 0.02 × 109/L with a maximum of 23.36 × 109/L and a mean of 13.48 ± 3.87 × 109/L. Using the one-way analysis of variance test, we found no significant difference in mean WBC count and Hb concentration across various age-group categories that we defined. Bacteriuria was found in 25% of participants. The most common bacterial isolates were Staphylococcus aureus (32%) and coagulase-negative Staphylococci (32%). Klebsiella pneumoniae was 16%. We found no significant association between bacterial isolates and white blood cell count, age groups, sex, and anaemia severity p=0.41. None of the participants were diagnosed with kidney disease. There was a high prevalence of asymptomatic UTIs among SCA patients at UTH, which, when coupled with the marked leukocytosis and anaemia, may negatively impact the clinical outcome of the patients. Therefore, we recommend close monitoring of sickle cell patients in Zambia for such conditions to improve patients’ outcomes

    Bacteriological profile and antimicrobial efficacy of alcohol-based hand rubs among health care workers and family caregivers at the children's university teaching hospital in Lusaka, Zambia

    No full text
    Background: Hands of healthcare workers (HCWs) and family caregivers are a potential source of bacterial pathogens that may be transferred to susceptible individuals. However, there is a paucity of data regarding the effect of hand rubs used in Zambian hospitals. Therefore, we determined the effect of locally made alcohol-based hand rubs in three selected wards of the Children Hospital at the University Teaching Hospital in Zambia. Methods: This was a cross-sectional study involving 31 participants (12 family caregivers, 5 doctors and 14 nurses). The samples were collected before and after the use of the alcohol-based hand rub by direct fingerprints. They were then cultured and identified using conventional microbiological methods. The Kirby-Bauer Disc Diffusion method was used for antimicrobial susceptibility testing. Results: All samples collected from the participants yielded bacterial growth with a total of 7 species isolated. These included coagulase-negative staphylococcus (33.3%), Bacillus species (28.9%), Staphylococcus aureus (22.2%), Enterobacter agglomerans (6.7%), Corynebacterium species (4.4%), Escherichia coli (2.2%) and Burkholderia pseudomallei (2.2%). Notably, all study participants hands were not only contaminated but with drug-resistant organisms as most of the bacterial isolates were resistant to routine antibiotics used at the hospital including ciprofloxacin. S. aureus was also resistant to oxacillin thus suggesting the presence of Methicillin-Resistant S. aureus. The use of alcohol-based hand rubs reduced the bacterial load by 92.6% on doctors and nurses’ hands and by 84.5% on the hands of family caregivers. Conclusion: This study confirms that the hands of HCWs and family caregivers may play a role in the transmission of drug-resistant bacteria and that alcohol-based hand rubs can be an effective way of reducing bacterial hand contamination among healthcare workers and family caregivers. Therefore, we recommend that measures be put in place by the hospital to ensure the availability of hand rubs to HCWs as well as caregivers

    Detection of Human Herpes Virus 8 in Kaposi’s sarcoma tissues at the University Teaching Hospital, Lusaka, Zambia

    Get PDF
    Introduction: Human herpes virus-8, a γ2-herpes virus, is the aetiological agent of Kaposi sarcoma. Recently, Kaposi's sarcoma cases have increased in Zambia. However, the diagnosis of this disease is based on morphological appearance of affected tissues using histological techniques, and the association with its causative agent, Human Herpes virus 8 is not sought. This means poor prognosis for affected patients since the causative agent is not targeted during diagnosis and KS lesions may be mistaken for other reactive and neoplastic vascular proliferations when only histological techniques are used. Therefore, this study was aimed at providing evidence of Human Herpes virus 8 infection in Kaposi's sarcoma tissues at the University Teaching Hospital in Lusaka, Zambia.Methods: One hundred and twenty suspected Kaposi's sarcoma archival formalinfixed paraffin-wax embedded tissues stored from January 2013 to December 2014 in the Histopathology Laboratory at the University Teaching Hospital, Lusaka, Zambia were analysed using histology and Polymerase Chain Reaction targeting the ORF26 gene of Human Herpes virus 8.Results: The predominant histological type of Kaposi's sarcoma detected was the Nodular type (60.7%) followed by the plaque type (22.6%) and patch type (16.7%). The nodular lesion was identified mostly in males (40.5%, 34/84) than females (20.2%, 17/84) (p=0.041). Human Herpes virus 8 DNA was detected in 53.6% (45/84) and mostly in the nodular KS lesions (60%, 27/84) (p=0.035).Conclusion: The findings in this study show that the Human Herpes virus-8 is detectable in Kaposi's sarcoma tissues, and, as previously reported in other settings, is closely associated with Kaposi's sarcoma. The study has provided important baseline data for use in the diagnosis of this disease and the identification of the virus in the tissues will aid in targeted therapy.Keywords: Human Herpes Virus 8, Kaposi´s sarcoma, histological type

    Influenza A and D Viruses in Non-Human Mammalian Hosts in Africa: A Systematic Review and Meta-Analysis

    No full text
    We conducted a systematic review and meta-analysis to investigate the prevalence and current knowledge of influenza A virus (IAV) and influenza D virus (IDV) in non-human mammalian hosts in Africa. PubMed, Google Scholar, Wiley Online Library and World Organisation for Animal Health (OIE-WAHIS) were searched for studies on IAV and IDV from 2000 to 2020. Pooled prevalence and seroprevalences were estimated using the quality effects meta-analysis model. The estimated pooled prevalence and seroprevalence of IAV in pigs in Africa was 1.6% (95% CI: 0–5%) and 14.9% (95% CI: 5–28%), respectively. The seroprevalence of IDV was 87.2% (95% CI: 24–100%) in camels, 9.3% (95% CI: 0–24%) in cattle, 2.2% (95% CI: 0–4%) in small ruminants and 0.0% (95% CI: 0–2%) in pigs. In pigs, H1N1 and H1N1pdm09 IAVs were commonly detected. Notably, the highly pathogenic H5N1 virus was also detected in pigs. Other subtypes detected serologically and/or virologically included H3N8 and H7N7 in equids, H1N1, and H3N8 and H5N1 in dogs and cats. Furthermore, various wildlife animals were exposed to different IAV subtypes. For prudent mitigation of influenza epizootics and possible human infections, influenza surveillance efforts in Africa should not neglect non-human mammalian hosts. The impact of IAV and IDV in non-human mammalian hosts in Africa deserves further investigation

    Phylogenetic Analysis of Newcastle Disease Virus Isolated from Poultry in Live Bird Markets and Wild Waterfowl in Zambia

    No full text
    Poultry production is essential to the economy and livelihood of many rural Zambian households. However, the industry is threatened by infectious diseases, particularly Newcastle disease virus (NDV) infection. Therefore, this study employed next-generation sequencing to characterise six NDV isolates from poultry in Zambia’s live bird markets (LBMs) and wild waterfowl. Four NDV isolates were detected from 410 faecal samples collected from chickens in LBMs in Lusaka and two from 2851 wild birds from Lochinvar National Park. Phylogenetic analysis revealed that the four NDVs from LBM clustered in genotype VII and sub-genotype VII.2 were closely related to viruses previously isolated in Zambia and other Southern African countries, suggesting possible local and regional transboundary circulation of the virus. In contrast, the two isolates from wild birds belonged to class I viruses, genotype 1, and were closely related to isolates from Europe and Asia, suggesting the possible introduction of these viruses from Eurasia, likely through wild bird migration. The fusion gene cleavage site motif for all LBM-associated isolates was 112RRQKR|F117, indicating that the viruses are virulent, while the isolates from wild waterfowl had the typical 112ERQER|L117 avirulent motif. This study demonstrates the circulation of virulent NDV strains in LBMs and has, for the first time, characterised NDV from wild birds in Zambia. The study further provides the first whole genomes of NDV sub-genotype VII.2 and genotype 1 from Zambia and stresses the importance of surveillance and molecular analysis for monitoring the circulation of NDV genotypes and viral evolution

    Surveillance and Phylogenetic Characterisation of Avian Influenza Viruses Isolated from Wild Waterfowl in Zambia in 2015, 2020, and 2021

    No full text
    In recent years, the southern African region has experienced repeated incursions of highly pathogenic avian influenza viruses (HPAIVs), with wild migratory birds being implicated in the spread. To understand the profile of avian influenza viruses (AIVs) circulating in Zambia, we surveyed wild waterfowl for AIVs and phylogenetically characterised the isolates detected in 2015, 2020, and 2021. A total of 2,851 faecal samples of wild waterfowl were collected from Lochinvar National Park in the Southern Province of Zambia. During the study period, 85 (3.0%) low pathogenicity AIVs belonging to various subtypes were isolated, with H2N9, H8N4, and H10N8 being reported for the first time in avian species in Africa. The majority of the isolates were detected from glossy ibis (order Pelecaniformes) making it the first report of AIV from these birds in Zambia. Phylogenetic analysis of all eight gene segments of the 30 full genomes obtained in this study revealed that all the isolates belonged to the Eurasian lineage with their closest relatives being viruses isolated from wild and/or domestic birds in Bangladesh, Belgium, Egypt, Georgia, Mongolia, the Netherlands, and South Africa. Additionally, the Zambian viruses were grouped into distinct clusters based on the year of isolation. While no notifiable AIVs of the H5 or H7 subtypes were detected in wild birds in Zambia, viral internal protein genes of some viruses were closely related to H7 low pathogenicity AIVs. This study shows that periodically, a considerable diversity of AIV subtypes are introduced into the Zambian ecosystem by wild migratory waterfowl. The findings highlight the importance of continuous surveillance and monitoring of AIVs in wild waterfowl, including birds traditionally not considered to be major AIV reservoirs, for a better understanding of the eco-epidemiology and evolutionary dynamics of AIVs in Africa

    Antimicrobial susceptibility and genomic profiling of Salmonella enterica from bloodstream infections at a tertiary referral hospital in Lusaka, Zambia, 2018-2019

    Get PDF
    OBJECTIVES: This study investigated antimicrobial susceptibility and genomic profiling of S. enterica isolated from bloodstream infections at a tertiary referral hospital in Lusaka, Zambia, 2018–2019. METHOD: This was a prospective hospital-based study involving routine blood culture samples submitted to the microbiology laboratory at the University Teaching Hospital. Identification of S. enterica and determination of antimicrobial susceptibility profiles was achieved through conventional and automated methods. Whole-genome sequencing (WGS) was conducted, and the sequence data outputs were processed for species identification, serotype determination, multilocus sequence typing (MLST) profile determination, identification of antimicrobial resistance determinants, and phylogeny. RESULTS: Seventy-six Salmonella enterica were isolated and 64 isolates underwent WGS. Salmonella Typhi (72%) was the most prevalent serotype. Notable was the occurrence of invasive non-typhoidal Salmonella Typhimurium ST313 (3%), resistance to cephalosporins (4%) and ciprofloxacin (5%), multidrug resistance (46%), and reduced susceptibility to ciprofloxacin (30%) and imipenem (3%). Phylogenetic cluster analysis showed multiple Salmonella serovars with a wide range of genetic diversity. CONCLUSION: The genetic diversity of Salmonella Typhi, high prevalence of multidrug resistance, and the emergence of ciprofloxacin and cephalosporin resistance warrants improved hygiene and water and sanitation provision, continued surveillance to apprise antibiograms and inform policy, and the introduction of the typhoid conjugate vaccine
    corecore