947 research outputs found

    Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts

    Full text link
    To test whether the short GRB rates, redshift distribution and host galaxies are consistent with current theoretical predictions, we use avery large database of population synthesis calculations to examine BH-NS and NS-NS merger rates in the universe, factoring in (i) the star formation history of the universe, (ii) a heterogeneous population of star-forming galaxies, including spirals and ellipticals, and (iii) a simple flux-limited selection model for short GRB detection. When we require our models reproduce the known short GRB rates and redshift measurements (and, for NS-NS, the merger rates extrapolated from binary pulsars in the Galaxy), a small fraction of models reproduce all observations, both when we assume a NS-NS and a BH-NS origin for bursts. Most commonly models produce mergers preferentially in spiral galaxies if short GRBs arise from NS-NS mergers alone. Model universes where present-day binary mergers occur preferentially in elliptical galaxies necessarily include a significant fraction of binaries with long delay times between birth and merger (often O(10Gyr)O(10{\rm Gyr})). Though long delays occur, almost all of our models predict that a higher proportion of short GRBs should occur at moderate to high redshift (e.g., z>1z>1) than has presently been observed, in agreement with recent observations which suggest a selection bias towards successful follow-up of low-redshift short GRBs. Finally, if only a fraction of BH-NS mergers have the right combination of masses and spins to make GRBs, then at best only a small fraction of BH-NS models could be consistent with all {\em current} available data. (Abridged)Comment: 14 figures, using bitmapped fonts (via eps2eps) to fit in archive space restrictions; better resolution figures are available from the author. Accepted for publication in ApJ. v3 updates reference

    Constraining population synthesis models via the binary neutron star population

    Full text link
    The observed sample of double neutron-star (NS-NS) binaries presents a challenge to population-synthesis models of compact object formation: the parameters entering into these models must be carefully chosen so as to match (i) the observed star formation rate and (ii) the formation rate of NS-NS binaries, which can be estimated from the observed sample and the selection effects related to the discoveries with radio-pulsar surveys. In this paper, we select from an extremely broad family of possible population synthesis models those few (2%) which are consistent with the observed sample of NS-NS binaries. To further sharpen the constraints the observed NS-NS population places upon our understanding of compact-object formation processes, we separate the observed NS-NS population into two channels: (i) merging NS-NS binaries, which will inspiral and merge through the action of gravitational waves within 1010 Gyr, and (ii) wide NS-NS binaries, consisting of all the rest. With the subset of astrophysically consistent models, we explore the implications for the rates at which double black hole (BH-BH), black hole-neutron star (BH-NS), and NS-NS binaries will merge through the emission of gravitational waves.Comment: (v1) Submitted to ApJ. Uses emulateapj.cls. 8 pages, 7 figures. (v2) Minor textual changes in response to referee queries. Substantial additions in appendicies, including a detailed discussion of sample multidimensional population synthesis fit

    The Brightest Point X-Ray Sources in Elliptical Galaxies and the Mass Spectrum of Accreting Black Holes

    Full text link
    We propose that the shape of the upper-end X-ray luminosity function observed in elliptical galaxies for point sources is a footprint of the black-hole (BH) mass spectrum among old X-ray transients formed in the galaxies. We show that this underlying BH mass spectrum is modified by a weighting factor that is related to the transient duty cycle and it generally depends on the BH mass and XRB donor type (main-sequence, red-giant, or white-dwarf donors). A duty cycle that depends on the binary mass-transfer rate relative to the critical rate for transient behavior is most probably favored. We also find that the derived BH mass spectrum slope depends on the strength of angular momentum loss due to magnetic braking for main-sequence donors. More specifically, we find that, for ``standard'' magnetic braking, BH XRBs with red-giant donors dominate the upper-end XLF; for weaker magnetic braking prescriptions main-sequence donors are found to be dominant. In both cases the BH mass spectrum has a differential slope of ~2.5 and an upper BH mass cut-off at ~20 Msun is needed to understand the very brightest of the BH XRBs in elliptical galaxies. We expect that our result will help to constrain binary population synthesis models and the adopted relations between black holes and the masses of their progenitors.Comment: 10 pages in ApJ format, 4 figures, accepted for publication in Ap

    Polar kicks and the spin period - eccentricity relation in double neutron stars

    Full text link
    We present results of a population synthesis study aimed at examining the role of spin-kick alignment in producing a correlation between the spin period of the first-born neutron star and the orbital eccentricity of observed double neutron star binaries in the Galactic disk. We find spin-kick alignment to be compatible with the observed correlation, but not to alleviate the requirements for low kick velocities suggested in previous population synthesis studies. Our results furthermore suggest low- and high-eccentricity systems may form through two distinct formation channels distinguished by the presence or absence of a stable mass transfer phase before the formation of the second neutron star. The presence of highly eccentric systems in the observed sample of double neutron stars may furthermore support the notion that neutron stars accrete matter when moving through the envelope of a giant companion.Comment: To appear in the proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More", August 12-17, 2007, McGill University, Montreal, Canad

    Merger Sites of Double Neutron Stars and their Host Galaxies

    Get PDF
    Using the StarTrack population synthesis code we analyze the formation channels possibly available to double neutron star binaries and find that they can be richer than previously thought. We identify a group of short lived, tight binaries, which do not live long enough to escape their host galaxies, despite their large center-of-mass velocities. We present our most recent results on all possible evolutionary paths leading to the formation of double neutron stars, calculate their coalescence rates, and also revisit the question of the distribution of merger sites around host galaxies. For a wide variety of binary evolution models and galaxy potentials, we find that most of neutron star mergers take place within galaxies. Our results stem from allowing for radial and common envelope evolution of helium-rich stars (testable in the future with detailed stellar-structure and hydrodynamic calculations) and indicate that double neutron star binaries may not be excluded as Gamma-Ray Burst (GRB) progenitors solely on the basis of their spatial distribution around host galaxies. We also find, in contrast to Bethe & Brown (1998), that in a significant fraction of common envelope (CE) phases neutron stars do not accrete enough material to become black holes, and thus the channels involving CEs are still open for the formation of double neutron stars.Comment: 12 pages, 3 figures, ApJ Letters 2002, accepte

    Eccentric double white dwarfs as LISA sources in globular clusters

    Full text link
    We consider the formation of double white dwarfs (DWDs) through dynamical interactions in globular clusters. Such interactions can give rise to eccentric DWDs, in contrast to the exclusively circular population expected to form in the Galactic disk. We show that for a 5-year Laser Interferometer Space Antenna (LISA) mission and distances as far as the Large Magellanic Cloud, multiple harmonics from eccentric DWDs can be detected at a signal-to-noise ratio higher than 8 for at least a handful of eccentric DWDs, given their formation rate and typical lifetimes estimated from current cluster simulations. Consequently the association of eccentricity with stellar-mass LISA sources does not uniquely involve neutron stars, as is usually assumed. Due to the difficulty of detecting (eccentric) DWDs with present and planned electromagnetic observatories, LISA could provide unique dynamical identifications of these systems in globular clusters.Comment: Published in ApJ 665, L5

    Interacting Binaries with Eccentric Orbits. III. Orbital Evolution due to Direct Impact and Self-Accretion

    Full text link
    The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of Roche lobe overflow (RLO) is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion (DA) onto the companion star within a single orbit, self-accretion (SA) back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star. We calculate the secular evolution of the binary orbit in the first two cases and conclude that DA can increase or decrease the orbital semi-major axis and eccentricity, while SA always decreases the orbital both orbital elements. In cases where mass overflow contributes to circularizing the orbit, circularization can set in on timescales as short as a few per cent of the mass transfer timescale. In cases where mass overflow increases the eccentricity, the orbital evolution is governed by competition between mass overflow and tidal torques. In the absence of tidal torques, mass overflow resulting in DI can lead to substantially subsynchronously rotating donor stars. Contrary to common assumptions, DI furthermore does not always provide a strong sink of orbital angular momentum in close mass-transferring binaries; in fact we instead find that a significant part can be returned to the orbit during the particle orbit. The formulation presented here can be combined with stellar and binary evolution codes to generate a better picture of the evolution of eccentric, RLO binary star systems.Comment: 15 pages, 10 figures, Accepted for publication in Ap

    Modeling the Redshift Evolution of the Normal Galaxy X-ray Luminosity Function

    Get PDF
    Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high redshift galaxies allow us to probe the formation and evolution of X-ray binaries on very long timescales. In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low CE efficiencies, a 50% twins mass ratio distribution, a steeper IMF exponent, and high stellar wind mass loss rates best match observational results from Tzanavaris & Georgantopoulos (2008), though they significantly underproduce bright early-type and very bright (Lx > 10d41) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, AGN contamination, and a lack of dynamically formed Low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10d40 and 10d41 erg/s.Comment: Accepted into ApJ, 17 pages, 3 tables, 7 figures. Text updated to address referee's comment
    • …
    corecore