703 research outputs found

    Nondegenerate 3D complex Euclidean superintegrable systems and algebraic varieties

    Full text link
    A classical (or quantum) second order superintegrable system is an integrable n-dimensional Hamiltonian system with potential that admits 2n-1 functionally independent second order constants of the motion polynomial in the momenta, the maximum possible. Such systems have remarkable properties: multi-integrability and multi-separability, an algebra of higher order symmetries whose representation theory yields spectral information about the Schroedinger operator, deep connections with special functions and with QES systems. Here we announce a complete classification of nondegenerate (i.e., 4-parameter) potentials for complex Euclidean 3-space. We characterize the possible superintegrable systems as points on an algebraic variety in 10 variables subject to six quadratic polynomial constraints. The Euclidean group acts on the variety such that two points determine the same superintegrable system if and only if they lie on the same leaf of the foliation. There are exactly 10 nondegenerate potentials.Comment: 35 page

    Quadratic Algebra Approach to Relativistic Quantum Smorodinsky-Winternitz Systems

    Full text link
    There exist a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude (SVPEM) and the Schrodinger equation. We obtain the relativistic energy spectrum for the four Smorodinsky-Winternitz systems from the quasi-Hamiltonian and the quadratic algebras obtained by Daskaloyannis in the non-relativistic context. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras may be applied to the quantum relativistic case. We also present the symmetry algebra of the Dirac equation for these four systems and show that the quadratic algebra obtained is equivalent to the one obtained from the quasi-Hamiltonian.Comment: 19 page

    Integrable geodesic motion on 3D curved spaces from non-standard quantum deformations

    Full text link
    The link between 3D spaces with (in general, non-constant) curvature and quantum deformations is presented. It is shown how the non-standard deformation of a sl(2) Poisson coalgebra generates a family of integrable Hamiltonians that represent geodesic motions on 3D manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. A different Hamiltonian defined on the same deformed coalgebra is also shown to generate a maximally superintegrable geodesic motion on 3D Riemannian and (2+1)D relativistic spaces whose sectional curvatures are all constant and equal to z. This approach can be generalized to arbitrary dimension.Comment: 7 pages. Communication presented at the 14th Int. Colloquium on Integrable Systems 14-16 June 2005, Prague, Czech Republi

    Path Integral Approach for Superintegrable Potentials on Spaces of Non-constant Curvature: II. Darboux Spaces DIII and DIV

    Get PDF
    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces \DIII and \DIV five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively

    Superintegrability on sl(2)-coalgebra spaces

    Full text link
    We review a recently introduced set of N-dimensional quasi-maximally superintegrable Hamiltonian systems describing geodesic motions, that can be used to generate "dynamically" a large family of curved spaces. From an algebraic viewpoint, such spaces are obtained through kinetic energy Hamiltonians defined on either the sl(2) Poisson coalgebra or a quantum deformation of it. Certain potentials on these spaces and endowed with the same underlying coalgebra symmetry have been also introduced in such a way that the superintegrability properties of the full system are preserved. Several new N=2 examples of this construction are explicitly given, and specific Hamiltonians leading to spaces of non-constant curvature are emphasized.Comment: 12 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle

    Complete sets of invariants for dynamical systems that admit a separation of variables

    Get PDF
    Consider a classical Hamiltonian H in n dimensions consisting of a kinetic energy term plus a potential. If the associated Hamilton–Jacobi equation admits an orthogonal separation of variables, then it is possible to generate algorithmically a canonical basis Q, P where P1 = H, P2, ,Pn are the other second-order constants of the motion associated with the separable coordinates, and {Qi,Qj} = {Pi,Pj} = 0, {Qi,Pj} = ij. The 2n–1 functions Q2, ,Qn,P1, ,Pn form a basis for the invariants. We show how to determine for exactly which spaces and potentials the invariant Qj is a polynomial in the original momenta. We shed light on the general question of exactly when the Hamiltonian admits a constant of the motion that is polynomial in the momenta. For n = 2 we go further and consider all cases where the Hamilton–Jacobi equation admits a second-order constant of the motion, not necessarily associated with orthogonal separable coordinates, or even separable coordinates at all. In each of these cases we construct an additional constant of the motion

    Superintegrable systems with spin and second-order integrals of motion

    Full text link
    We investigate a quantum nonrelativistic system describing the interaction of two particles with spin 1/2 and spin 0, respectively. We assume that the Hamiltonian is rotationally invariant and parity conserving and identify all such systems which allow additional integrals of motion that are second order matrix polynomials in the momenta. These integrals are assumed to be scalars, pseudoscalars, vectors or axial vectors. Among the superintegrable systems obtained, we mention a generalization of the Coulomb potential with scalar potential V0=αr+3ℏ28r2V_0=\frac{\alpha}{r}+\frac{3\hbar^2}{8r^2} and spin orbital one V1=ℏ2r2V_1=\frac{\hbar}{2r^2}.Comment: 32 page

    Superintegrability on N-dimensional spaces of constant curvature from so(N+1) and its contractions

    Full text link
    The Lie-Poisson algebra so(N+1) and some of its contractions are used to construct a family of superintegrable Hamiltonians on the ND spherical, Euclidean, hyperbolic, Minkowskian and (anti-)de Sitter spaces. We firstly present a Hamiltonian which is a superposition of an arbitrary central potential with N arbitrary centrifugal terms. Such a system is quasi-maximally superintegrable since this is endowed with 2N-3 functionally independent constants of the motion (plus the Hamiltonian). Secondly, we identify two maximally superintegrable Hamiltonians by choosing a specific central potential and finding at the same time the remaining integral. The former is the generalization of the Smorodinsky-Winternitz system to the above six spaces, while the latter is a generalization of the Kepler-Coulomb potential, for which the Laplace-Runge-Lenz N-vector is also given. All the systems and constants of the motion are explicitly expressed in a unified form in terms of ambient and polar coordinates as they are parametrized by two contraction parameters (curvature and signature of the metric).Comment: 14 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle

    N-dimensional sl(2)-coalgebra spaces with non-constant curvature

    Full text link
    An infinite family of ND spaces endowed with sl(2)-coalgebra symmetry is introduced. For all these spaces the geodesic flow is superintegrable, and the explicit form of their common set of integrals is obtained from the underlying sl(2)-coalgebra structure. In particular, ND spherically symmetric spaces with Euclidean signature are shown to be sl(2)-coalgebra spaces. As a byproduct of this construction we present ND generalizations of the classical Darboux surfaces, thus obtaining remarkable superintegrable ND spaces with non-constant curvature.Comment: 11 pages. Comments and new references have been added; expressions for scalar curvatures have been corrected and simplifie

    Quantum superintegrability and exact solvability in N dimensions

    Full text link
    A family of maximally superintegrable systems containing the Coulomb atom as a special case is constructed in N-dimensional Euclidean space. Two different sets of N commuting second order operators are found, overlapping in the Hamiltonian alone. The system is separable in several coordinate systems and is shown to be exactly solvable. It is solved in terms of classical orthogonal polynomials. The Hamiltonian and N further operators are shown to lie in the enveloping algebra of a hidden affine Lie algebra
    • 

    corecore