There exist a relation between the Klein-Gordon and the Dirac equations with
scalar and vector potentials of equal magnitude (SVPEM) and the Schrodinger
equation. We obtain the relativistic energy spectrum for the four
Smorodinsky-Winternitz systems from the quasi-Hamiltonian and the quadratic
algebras obtained by Daskaloyannis in the non-relativistic context. We point
out how results obtained in context of quantum superintegrable systems and
their polynomial algebras may be applied to the quantum relativistic case. We
also present the symmetry algebra of the Dirac equation for these four systems
and show that the quadratic algebra obtained is equivalent to the one obtained
from the quasi-Hamiltonian.Comment: 19 page