1,869 research outputs found
Do correlations create an energy gap in electronic bilayers? Critical analysis of different approaches
This paper investigates the effect of correlations in electronic bilayers on
the longitudinal collective mode structure. We employ the dielectric
permeability constructed by means of the classical theory of moments. It is
shown that the neglection of damping processes overestimates the role of
correlations. We conclude that the correct account of damping processes leads
to an absence of an energy gap.Comment: 4 page
Strategies for the Parallel Training of Simple Recurrent Neural Networks
Two concurrent implementations of the method of conjugate gradients for training Elman networks are discussed. The parallelism is obtained in the computation of the error gradient and the method is therefore applicable to any gradient descent training technique for this form of network. The experimental results were obtained on a Sun Sparc Center 2000 multiprocessor. The Sparc 2000 is a shared memory machine well suited to coarse-grained distributed computations, but the concurrency could be extended to other architectures as well
Magnetometry via a double-pass continuous quantum measurement of atomic spin
We argue that it is possible in principle to reduce the uncertainty of an
atomic magnetometer by double-passing a far-detuned laser field through the
atomic sample as it undergoes Larmor precession. Numerical simulations of the
quantum Fisher information suggest that, despite the lack of explicit
multi-body coupling terms in the system's magnetic Hamiltonian, the parameter
estimation uncertainty in such a physical setup scales better than the
conventional Heisenberg uncertainty limit over a specified but arbitrary range
of particle number N. Using the methods of quantum stochastic calculus and
filtering theory, we demonstrate numerically an explicit parameter estimator
(called a quantum particle filter) whose observed scaling follows that of our
calculated quantum Fisher information. Moreover, the quantum particle filter
quantitatively surpasses the uncertainty limit calculated from the quantum
Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only
single-body operators. We also show that a quantum Kalman filter is
insufficient to obtain super-Heisenberg scaling, and present evidence that such
scaling necessitates going beyond the manifold of Gaussian atomic states.Comment: 17 pages, updated to match print versio
Phases in Strongly Coupled Electronic Bilayer Liquids
The strongly correlated liquid state of a bilayer of charged particles has
been studied via the HNC calculation of the two-body functions. We report the
first time emergence of a series of structural phases, identified through the
behavior of the two-body functions.Comment: 5 pages, RevTEX 3.0, 4 ps figures; Submitted to Phys. Rev. Let
Dynamical correlations and collective excitations of Yukawa liquids
In dusty (complex) plasmas, containing mesoscopic charged grains, the
grain-grain interaction in many cases can be well described through a Yukawa
potential. In this Review we summarize the basics of the computational and
theoretical approaches capable of describing many-particle Yukawa systems in
the liquid and solid phases and discuss the properties of the dynamical density
and current correlation spectra of three- and two-dimensional strongly coupled
Yukawa systems, generated by molecular dynamics simulations. We show details of
the dispersion relations for the collective excitations in these
systems, as obtained theoretically following the quasilocalized charge
approximation, as well as from the fluctuation spectra created by simulations.
The theoretical and simulation results are also compared with those obtained in
complex plasma experiments.Comment: 54 pages, 31 figure
International Society of Sports Nutrition position stand: beta-alanine
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of beta-alanine supplementation. Based on the current available literature, the conclusions of the ISSN are as follows: 1) Four weeks of beta-alanine supplementation (4–6 g daily) significantly augments muscle carnosine concentrations, thereby acting as an intracellular pH buffer; 2) Beta-alanine supplementation currently appears to be safe in healthy populations at recommended doses; 3) The only reported side effect is paraesthesia (tingling), but studies indicate this can be attenuated by using divided lower doses (1.6 g) or using a sustained-release formula; 4) Daily supplementation with 4 to 6 g of beta-alanine for at least 2 to 4 weeks has been shown to improve exercise performance, with more pronounced effects in open end-point tasks/time trials lasting 1 to 4 min in duration; 5) Beta-alanine attenuates neuromuscular fatigue, particularly in older subjects, and preliminary evidence indicates that beta-alanine may improve tactical performance; 6) Combining beta-alanine with other single or multi-ingredient supplements may be advantageous when supplementation of beta-alanine is high enough (4–6 g daily) and long enough (minimum 4 weeks); 7) More research is needed to determine the effects of beta-alanine on strength, endurance performance beyond 25 min in duration, and other health-related benefits associated with carnosine
Towards Autopoietic Computing
A key challenge in modern computing is to develop systems that address
complex, dynamic problems in a scalable and efficient way, because the
increasing complexity of software makes designing and maintaining efficient and
flexible systems increasingly difficult. Biological systems are thought to
possess robust, scalable processing paradigms that can automatically manage
complex, dynamic problem spaces, possessing several properties that may be
useful in computer systems. The biological properties of self-organisation,
self-replication, self-management, and scalability are addressed in an
interesting way by autopoiesis, a descriptive theory of the cell founded on the
concept of a system's circular organisation to define its boundary with its
environment. In this paper, therefore, we review the main concepts of
autopoiesis and then discuss how they could be related to fundamental concepts
and theories of computation. The paper is conceptual in nature and the emphasis
is on the review of other people's work in this area as part of a longer-term
strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure
Quasi-classical Molecular Dynamics Simulations of the Electron Gas: Dynamic properties
Results of quasi-classical molecular dynamics simulations of the quantum
electron gas are reported. Quantum effects corresponding to the Pauli and the
Heisenberg principle are modeled by an effective momentum-dependent
Hamiltonian. The velocity autocorrelation functions and the dynamic structure
factors have been computed. A comparison with theoretical predictions was
performed.Comment: 8 figure
Plasma Oscillations and Expansion of an Ultracold Neutral Plasma
We report the observation of plasma oscillations in an ultracold neutral
plasma. With this collective mode we probe the electron density distribution
and study the expansion of the plasma as a function of time. For classical
plasma conditions, i.e. weak Coulomb coupling, the expansion is dominated by
the pressure of the electron gas and is described by a hydrodynamic model.
Discrepancies between the model and observations at low temperature and high
density may be due to strong coupling of the electrons.Comment: 4 pages, 4 figures. Accepted Phys. Rev. Let
Correlational Origin of the Roton Minimum
We present compelling evidence supporting the conjecture that the origin of
the roton in Bose-condensed systems arises from strong correlations between the
constituent particles. By studying the two dimensional bosonic dipole systems a
paradigm, we find that classical molecular dynamics (MD) simulations provide a
faithful representation of the dispersion relation for a low- temperature
quantum system. The MD simulations allow one to examine the effect of coupling
strength on the formation of the roton minimum and to demonstrate that it is
always generated at a sufficiently high enough coupling. Moreover, the
classical images of the roton-roton, roton-maxon, etc. states also appear in
the MD simulation spectra as a consequence of the strong coupling.Comment: 7 pages, 4 figure
- …