4 research outputs found

    Zeitliche und rĂ€umliche Prognose der StabilitĂ€t von Braunkohletagebaukippen im Nordraum Lausitz mit kĂŒnstlichen neuronalen Netzen

    Get PDF
    Mittels kĂŒnstlichen neuronalen Netzen wurden die in den rekultivierten Tagebaukippen im Nordraum Lausitz (Tagebaue Schlabendorf und Seese) auftretenden GelĂ€ndedeformationen infolge BodenverflĂŒssigung fĂŒr die Jahre 2009 - 2013 als Zeitreihe modelliert. Das Modell ist in der Lage, grob die zeitliche Entwicklung und exakt die rĂ€umliche Lage des in den Kippen auftretenden GefĂ€hrdungspotenzials nachzuvollziehen und als Funktion des sich Ă€ndernden Grundwasserspiegels und der sich Ă€ndernden OberflĂ€chenmorphologie in die Zukunft zu prognostizieren. Das Modell zeigt dynamisch das Entstehen neuer RisikoflĂ€chen in bisher scheinbar stabilen Bereichen des Untersuchungsgebietes. Die Korrektheit des Modells wurde mittels verschiedener Tests geprĂŒft sowie anhand einer Prognoserechnung fĂŒr das Jahr 2014 und des Vergleichs mit den real in 2014/2015 gegangenen Ereignissen nachgewiesen. Folgende GefĂ€hrdungsfaktoren wurden ermittelt: Destabilisierend wirken eine möglichst einförmige Lithologie folgender Zusammenset-zung: 31 % Feinsand, 34 % Mittelsand, 31 % Grobsand, 3 % Schluff, < 1 % Kies, < 1 % Kalk, < 1 % Ton, < 1 % Kohle, kf-Werte zwischen 10-4 und 10-4,5 m/s, ein Grundwasserflurabstand bei 3,45 m (Medianwert), möglichst hohe Gradienten der nicht lithologisch kontrollierten Parameter: TagebauoberflĂ€che, GrundwasseroberflĂ€che, Grundwasserflurabstand und MĂ€chtigkeit der gesĂ€ttigten Kippe. Stabilisierend wirken vor allem eine möglichst große HeterogenitĂ€t der Lithologie auf kleinem Raum (möglichst hohe Gradienten der lithologisch kontrollierten Parameter (z.B. Kiesgehalt, Sandgehalt, Tongehalt, Kohlegehalt)), ein möglichst geringer Sandanteil, möglichst hohe Anteile an Kies, Schluff, Ton, Kalk, bzw. Kohle, ein möglichst großer Grundwasserflurabstand sowie möglichst geringe Gradienten der nicht lithologisch kontrollierten Parameter: TagebauoberflĂ€che, GrundwasseroberflĂ€che, Grundwasserflurabstand, MĂ€chtigkeit der gesĂ€ttigten Kippe sowie wechselnde kf-Werte 10-7 bzw. >10-2 m/s. FĂŒr die Bearbeitung wurden ausschließlich die bei der LMBV vorhandenen bzw. laufend flĂ€chendeckend erhobenen Daten genutzt: Lage des Grundwasserspiegels, Relief der TagebauoberflĂ€che, Liegendes der Kippe, geologische Daten der Vorfeldbohrungen. Das Modell kann als dynamisches Instrument zum Risikomanagement vor bzw. wĂ€hrend der Sanierungsmaßnahmen genutzt werden. Mittels der Variation der prozesskontrollie-renden Parameter können die geotechnischen Auswirkungen verschiedener Sanierungsszenarien (z.B. Gestaltung der TagebauoberflĂ€che, SchĂŒttung der Kippen, Grundwasseranstieg) auf die StabilitĂ€t der Kippen prognostiziert werden.Geotechnical events (terrain deformation due to soil liquefaction) in lignite mining waste rock piles of the northern Lausitz area (opencast pits Schlabendorf and Seese), have been modeled as time series for the years 2009 – 2013 by using artificial neural networks. The model has clearly recognized the influences of various lithological and non-lithological controlled parameters on the occurrence of geotechnical events, and these have been quantified and weighted in terms of their importance. The model is able to predict the tem-poral evolution and the exact spatial location of the events occurring in the dumps as a function of changing groundwater levels and surface morphology. The model shows dynamically the emergence of new risk areas in hitherto seemingly stable areas. The correctness of the model was confirmed by means of various tests and its predictive success was demonstrated through forecasting of events for the years 2014 and 2015 and their comparison with the observed events of those years. The following main risk factors were identified: Important destabilizing factors are a monotonous lithology with the following composition: 31% fine sand, 34% medium sand, 31% coarse sand, 3% silt, <1% gravel, <1% lime, <1% clay, <1% coal, kf-values between 10-4 and 10-4.5 m/s, a surface to groundwater distance of 3.45 meters (median value), high gradients of non-lithological controlled parameters: waste dump surface, groundwater level, depth to groundwater and thickness of saturated dump. 2. Important stabilizing factors are a high heterogeneity of lithology (high gradients of the lithological controlled parameters: e.g. gravel content, sand content, clay content, carbon content), a low proportion of sand in the dump composition, high proportions of gravel, silt, clay, lime, or coal, a high depth to groundwater, low gradients of non-lithological controlled parameters: open pit surface, groundwater surface, depth to groundwater, thickness of saturated dump, strongly changing kf values between 10-7 and 10-2 m/s. The model can be used as a dynamic tool for risk management before and during the re-habilitation of lignite waste dumps, and for constructing stable waste dumps. By means of varying the model parameters (e.g. design of the dump surface, composition of dumped rocks, rising groundwater) the geotechnical effects of dump design and remediation scenarios can be predicted

    Zeitliche und rĂ€umliche Prognose der StabilitĂ€t von Braunkohletagebaukippen im Nordraum Lausitz mit kĂŒnstlichen neuronalen Netzen

    Get PDF
    Mittels kĂŒnstlichen neuronalen Netzen wurden die in den rekultivierten Tagebaukippen im Nordraum Lausitz (Tagebaue Schlabendorf und Seese) auftretenden GelĂ€ndedeformationen infolge BodenverflĂŒssigung fĂŒr die Jahre 2009 - 2013 als Zeitreihe modelliert. Das Modell ist in der Lage, grob die zeitliche Entwicklung und exakt die rĂ€umliche Lage des in den Kippen auftretenden GefĂ€hrdungspotenzials nachzuvollziehen und als Funktion des sich Ă€ndernden Grundwasserspiegels und der sich Ă€ndernden OberflĂ€chenmorphologie in die Zukunft zu prognostizieren. Das Modell zeigt dynamisch das Entstehen neuer RisikoflĂ€chen in bisher scheinbar stabilen Bereichen des Untersuchungsgebietes. Die Korrektheit des Modells wurde mittels verschiedener Tests geprĂŒft sowie anhand einer Prognoserechnung fĂŒr das Jahr 2014 und des Vergleichs mit den real in 2014/2015 gegangenen Ereignissen nachgewiesen. Folgende GefĂ€hrdungsfaktoren wurden ermittelt: Destabilisierend wirken eine möglichst einförmige Lithologie folgender Zusammenset-zung: 31 % Feinsand, 34 % Mittelsand, 31 % Grobsand, 3 % Schluff, < 1 % Kies, < 1 % Kalk, < 1 % Ton, < 1 % Kohle, kf-Werte zwischen 10-4 und 10-4,5 m/s, ein Grundwasserflurabstand bei 3,45 m (Medianwert), möglichst hohe Gradienten der nicht lithologisch kontrollierten Parameter: TagebauoberflĂ€che, GrundwasseroberflĂ€che, Grundwasserflurabstand und MĂ€chtigkeit der gesĂ€ttigten Kippe. Stabilisierend wirken vor allem eine möglichst große HeterogenitĂ€t der Lithologie auf kleinem Raum (möglichst hohe Gradienten der lithologisch kontrollierten Parameter (z.B. Kiesgehalt, Sandgehalt, Tongehalt, Kohlegehalt)), ein möglichst geringer Sandanteil, möglichst hohe Anteile an Kies, Schluff, Ton, Kalk, bzw. Kohle, ein möglichst großer Grundwasserflurabstand sowie möglichst geringe Gradienten der nicht lithologisch kontrollierten Parameter: TagebauoberflĂ€che, GrundwasseroberflĂ€che, Grundwasserflurabstand, MĂ€chtigkeit der gesĂ€ttigten Kippe sowie wechselnde kf-Werte 10-7 bzw. >10-2 m/s. FĂŒr die Bearbeitung wurden ausschließlich die bei der LMBV vorhandenen bzw. laufend flĂ€chendeckend erhobenen Daten genutzt: Lage des Grundwasserspiegels, Relief der TagebauoberflĂ€che, Liegendes der Kippe, geologische Daten der Vorfeldbohrungen. Das Modell kann als dynamisches Instrument zum Risikomanagement vor bzw. wĂ€hrend der Sanierungsmaßnahmen genutzt werden. Mittels der Variation der prozesskontrollie-renden Parameter können die geotechnischen Auswirkungen verschiedener Sanierungsszenarien (z.B. Gestaltung der TagebauoberflĂ€che, SchĂŒttung der Kippen, Grundwasseranstieg) auf die StabilitĂ€t der Kippen prognostiziert werden.Geotechnical events (terrain deformation due to soil liquefaction) in lignite mining waste rock piles of the northern Lausitz area (opencast pits Schlabendorf and Seese), have been modeled as time series for the years 2009 – 2013 by using artificial neural networks. The model has clearly recognized the influences of various lithological and non-lithological controlled parameters on the occurrence of geotechnical events, and these have been quantified and weighted in terms of their importance. The model is able to predict the tem-poral evolution and the exact spatial location of the events occurring in the dumps as a function of changing groundwater levels and surface morphology. The model shows dynamically the emergence of new risk areas in hitherto seemingly stable areas. The correctness of the model was confirmed by means of various tests and its predictive success was demonstrated through forecasting of events for the years 2014 and 2015 and their comparison with the observed events of those years. The following main risk factors were identified: Important destabilizing factors are a monotonous lithology with the following composition: 31% fine sand, 34% medium sand, 31% coarse sand, 3% silt, <1% gravel, <1% lime, <1% clay, <1% coal, kf-values between 10-4 and 10-4.5 m/s, a surface to groundwater distance of 3.45 meters (median value), high gradients of non-lithological controlled parameters: waste dump surface, groundwater level, depth to groundwater and thickness of saturated dump. 2. Important stabilizing factors are a high heterogeneity of lithology (high gradients of the lithological controlled parameters: e.g. gravel content, sand content, clay content, carbon content), a low proportion of sand in the dump composition, high proportions of gravel, silt, clay, lime, or coal, a high depth to groundwater, low gradients of non-lithological controlled parameters: open pit surface, groundwater surface, depth to groundwater, thickness of saturated dump, strongly changing kf values between 10-7 and 10-2 m/s. The model can be used as a dynamic tool for risk management before and during the re-habilitation of lignite waste dumps, and for constructing stable waste dumps. By means of varying the model parameters (e.g. design of the dump surface, composition of dumped rocks, rising groundwater) the geotechnical effects of dump design and remediation scenarios can be predicted

    Zeitliche und rĂ€umliche Prognose der StabilitĂ€t von Braunkohletagebaukippen im Nordraum Lausitz mit kĂŒnstlichen neuronalen Netzen

    No full text
    Mittels kĂŒnstlichen neuronalen Netzen wurden die in den rekultivierten Tagebaukippen im Nordraum Lausitz (Tagebaue Schlabendorf und Seese) auftretenden GelĂ€ndedeformationen infolge BodenverflĂŒssigung fĂŒr die Jahre 2009 - 2013 als Zeitreihe modelliert. Das Modell ist in der Lage, grob die zeitliche Entwicklung und exakt die rĂ€umliche Lage des in den Kippen auftretenden GefĂ€hrdungspotenzials nachzuvollziehen und als Funktion des sich Ă€ndernden Grundwasserspiegels und der sich Ă€ndernden OberflĂ€chenmorphologie in die Zukunft zu prognostizieren. Das Modell zeigt dynamisch das Entstehen neuer RisikoflĂ€chen in bisher scheinbar stabilen Bereichen des Untersuchungsgebietes. Die Korrektheit des Modells wurde mittels verschiedener Tests geprĂŒft sowie anhand einer Prognoserechnung fĂŒr das Jahr 2014 und des Vergleichs mit den real in 2014/2015 gegangenen Ereignissen nachgewiesen. Folgende GefĂ€hrdungsfaktoren wurden ermittelt: Destabilisierend wirken eine möglichst einförmige Lithologie folgender Zusammenset-zung: 31 % Feinsand, 34 % Mittelsand, 31 % Grobsand, 3 % Schluff, < 1 % Kies, < 1 % Kalk, < 1 % Ton, < 1 % Kohle, kf-Werte zwischen 10-4 und 10-4,5 m/s, ein Grundwasserflurabstand bei 3,45 m (Medianwert), möglichst hohe Gradienten der nicht lithologisch kontrollierten Parameter: TagebauoberflĂ€che, GrundwasseroberflĂ€che, Grundwasserflurabstand und MĂ€chtigkeit der gesĂ€ttigten Kippe. Stabilisierend wirken vor allem eine möglichst große HeterogenitĂ€t der Lithologie auf kleinem Raum (möglichst hohe Gradienten der lithologisch kontrollierten Parameter (z.B. Kiesgehalt, Sandgehalt, Tongehalt, Kohlegehalt)), ein möglichst geringer Sandanteil, möglichst hohe Anteile an Kies, Schluff, Ton, Kalk, bzw. Kohle, ein möglichst großer Grundwasserflurabstand sowie möglichst geringe Gradienten der nicht lithologisch kontrollierten Parameter: TagebauoberflĂ€che, GrundwasseroberflĂ€che, Grundwasserflurabstand, MĂ€chtigkeit der gesĂ€ttigten Kippe sowie wechselnde kf-Werte 10-7 bzw. >10-2 m/s. FĂŒr die Bearbeitung wurden ausschließlich die bei der LMBV vorhandenen bzw. laufend flĂ€chendeckend erhobenen Daten genutzt: Lage des Grundwasserspiegels, Relief der TagebauoberflĂ€che, Liegendes der Kippe, geologische Daten der Vorfeldbohrungen. Das Modell kann als dynamisches Instrument zum Risikomanagement vor bzw. wĂ€hrend der Sanierungsmaßnahmen genutzt werden. Mittels der Variation der prozesskontrollie-renden Parameter können die geotechnischen Auswirkungen verschiedener Sanierungsszenarien (z.B. Gestaltung der TagebauoberflĂ€che, SchĂŒttung der Kippen, Grundwasseranstieg) auf die StabilitĂ€t der Kippen prognostiziert werden.Geotechnical events (terrain deformation due to soil liquefaction) in lignite mining waste rock piles of the northern Lausitz area (opencast pits Schlabendorf and Seese), have been modeled as time series for the years 2009 – 2013 by using artificial neural networks. The model has clearly recognized the influences of various lithological and non-lithological controlled parameters on the occurrence of geotechnical events, and these have been quantified and weighted in terms of their importance. The model is able to predict the tem-poral evolution and the exact spatial location of the events occurring in the dumps as a function of changing groundwater levels and surface morphology. The model shows dynamically the emergence of new risk areas in hitherto seemingly stable areas. The correctness of the model was confirmed by means of various tests and its predictive success was demonstrated through forecasting of events for the years 2014 and 2015 and their comparison with the observed events of those years. The following main risk factors were identified: Important destabilizing factors are a monotonous lithology with the following composition: 31% fine sand, 34% medium sand, 31% coarse sand, 3% silt, <1% gravel, <1% lime, <1% clay, <1% coal, kf-values between 10-4 and 10-4.5 m/s, a surface to groundwater distance of 3.45 meters (median value), high gradients of non-lithological controlled parameters: waste dump surface, groundwater level, depth to groundwater and thickness of saturated dump. 2. Important stabilizing factors are a high heterogeneity of lithology (high gradients of the lithological controlled parameters: e.g. gravel content, sand content, clay content, carbon content), a low proportion of sand in the dump composition, high proportions of gravel, silt, clay, lime, or coal, a high depth to groundwater, low gradients of non-lithological controlled parameters: open pit surface, groundwater surface, depth to groundwater, thickness of saturated dump, strongly changing kf values between 10-7 and 10-2 m/s. The model can be used as a dynamic tool for risk management before and during the re-habilitation of lignite waste dumps, and for constructing stable waste dumps. By means of varying the model parameters (e.g. design of the dump surface, composition of dumped rocks, rising groundwater) the geotechnical effects of dump design and remediation scenarios can be predicted

    Compilation of a geo-hazard map for slope instabilities and landslides along the German railway infrastructure

    No full text
    In Germany and Europe infrastructure managers are already undertaking massive efforts to reduce the risks and effects of mass movements on railway infrastructure. Supporting these efforts and adding the future perspective, we present the results of ongoing project developing a nationwide landslide susceptibility map along the German railway network."br" Mechanisms and parameter-interactions that trigger mass movements are complex and related to local conditions regarding, e.g. geology, topography, land use, and climate. In a first step, open source geodata sets, e.g. digital elevation models, geological maps, and digital landscape models were combined within two parallel approaches (i) geotechnical knowledge based, and (ii) artificial neural network (ANN), compared to each other and verified with documented landslide events. To access the future landslide geo-hazard potential along railways under the influence of climate change, the most promising landslide susceptibility map will be enhanced by integrating climate scenario data. Additionally, the resolution of the input datasets will be improved, systematically."br" The results obtained within this project will be integrated into the risk assessment tool that will be developed parallel within the BMVI Network of Experts and finally provide decision support to users across the railway sector
    corecore