66 research outputs found

    THE COMPLEX CIRCUMNUCLEAR ENVIRONMENT of the BROAD-LINE RADIO GALAXY 3C 390.3 REVEALED by CHANDRA HETG

    Get PDF
    We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E sime 6.4 keV consistent with the Fe Kα is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter logξ = 2.3 ± 0.5 erg s−1 cm, column density logN H = 20.7 ± 0.1 cm−2, and outflow velocity v out < 150 km s−1; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei

    Feeding and Feedback in the Powerful Radio Galaxy 3C 120

    Get PDF
    We present the spectral analysis of a 200~ks observation of the broad-line radio galaxy 3C~120 performed with the high energy transmission grating (HETG) spectrometer on board the \emph{Chandra} X-ray Observatory. We find (i) a neutral absorption component intrinsic to the source with column density of logNH=20.67±0.05\text{log}N_H = 20.67\pm0.05~cm2^{-2}, (ii) no evidence for a warm absorber with an upper limit on the column density of just logNH<19.7\text{log}N_H < 19.7~cm2^{-2} assuming the typical ionization parameter logξ\xi\simeq2.5~erg~s1^{-1}~cm, the warm absorber may instead be replaced by (iii) a hot emitting gas with temperature kT0.7kT \simeq 0.7~keV observed as soft X-ray emission from ionized Fe L-shell lines which may originate from a kpc scale shocked bubble inflated by the AGN wind or jet with a shock velocity of about 1,000~km~s1^{-1} determined by the emission line width, (iv) a neutral Fe Kα\alpha line and accompanying emission lines indicative of a Compton-thick cold reflector with low reflection fraction R0.2R\simeq0.2, suggesting a large opening angle of the torus, (v) a highly ionized Fe~XXV emission feature indicative of photoionized gas with ionization parameter logξ\xi==3.750.38+0.273.75^{+0.27}_{-0.38}~erg~s1^{-1}~cm and a column density of logNH>22\text{log}N_H > 22~cm2^{-2} localized within \sim2~pc from the X-ray source, and (vi) possible signatures for a highly ionized disk wind. Together with previous evidence for intense molecular line emission, these results indicate that 3C~120 is likely a late state merger undergoing strong AGN feedback.Comment: Accepted for publication in Ap

    X-ray Absorption and Reflection in Active Galactic Nuclei

    Full text link
    X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei, and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies > 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.Comment: Accepted for publication in the Astronomy and Astrophysics Review. 58 pages, 9 figures. V2 has fixed an error in footnote

    Black hole spin: theory and observation

    Full text link
    In the standard paradigm, astrophysical black holes can be described solely by their mass and angular momentum - commonly referred to as `spin' - resulting from the process of their birth and subsequent growth via accretion. Whilst the mass has a standard Newtonian interpretation, the spin does not, with the effect of non-zero spin leaving an indelible imprint on the space-time closest to the black hole. As a consequence of relativistic frame-dragging, particle orbits are affected both in terms of stability and precession, which impacts on the emission characteristics of accreting black holes both stellar mass in black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN). Over the last 30 years, techniques have been developed that take into account these changes to estimate the spin which can then be used to understand the birth and growth of black holes and potentially the powering of powerful jets. In this chapter we provide a broad overview of both the theoretical effects of spin, the means by which it can be estimated and the results of ongoing campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes - From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer: Astrophysics and Space Science Library. Additional corrections mad

    Past, Present, and Future X-Ray and Gamma-Ray Missions

    Get PDF
    X- and -ray astronomy began in the early sixties of the last century with balloons flights, sounding rocket experiment and satellites. Long before space satellite detected X- and -rays emitted by cosmic sources, scientists had known that the Universe should be producing these photons. In this chapter we provided an overview of past and present missions that has made the X- and -ray astronomy an integral part of astronomical research, and prospects of future developments

    Does C. Parvum Treatment Affect Tumour Blood Flow and Hence Metastasis?

    No full text

    Applied Radiobiology

    No full text
    corecore