18 research outputs found

    Spatial multi-level interacting particle simulations and information theory-based error quantification

    Get PDF
    We propose a hierarchy of multi-level kinetic Monte Carlo methods for sampling high-dimensional, stochastic lattice particle dynamics with complex interactions. The method is based on the efficient coupling of different spatial resolution levels, taking advantage of the low sampling cost in a coarse space and by developing local reconstruction strategies from coarse-grained dynamics. Microscopic reconstruction corrects possibly significant errors introduced through coarse-graining, leading to the controlled-error approximation of the sampled stochastic process. In this manner, the proposed multi-level algorithm overcomes known shortcomings of coarse-graining of particle systems with complex interactions such as combined long and short-range particle interactions and/or complex lattice geometries. Specifically, we provide error analysis for the approximation of long-time stationary dynamics in terms of relative entropy and prove that information loss in the multi-level methods is growing linearly in time, which in turn implies that an appropriate observable in the stationary regime is the information loss of the path measures per unit time. We show that this observable can be either estimated a priori, or it can be tracked computationally a posteriori in the course of a simulation. The stationary regime is of critical importance to molecular simulations as it is relevant to long-time sampling, obtaining phase diagrams and in studying metastability properties of high-dimensional complex systems. Finally, the multi-level nature of the method provides flexibility in combining rejection-free and null-event implementations, generating a hierarchy of algorithms with an adjustable number of rejections that includes well-known rejection-free and null-event algorithms.Comment: 34 page

    Systematic Coarse-Grained Models for Molecular Systems Using Entropy †

    Get PDF
    The development of systematic coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of different methods for obtaining optimal parametrized coarse-grained models, starting from detailed atomistic representation for high dimensional molecular systems. We focus on methods based on information theory, such as relative entropy, showing that they provide parameterizations of coarse-grained models at equilibrium by minimizing a fitting functional over a parameter space. We also connect them with structural-based (inverse Boltzmann) and force matching methods. All the methods mentioned in principle are employed to approximate a many-body potential, the (n-body) potential of mean force, describing the equilibrium distribution of coarse-grained sites observed in simulations of atomically detailed models. We also present in a mathematically consistent way the entropy and force matching methods and their equivalence, which we derive for general nonlinear coarse-graining maps. We apply, and compare, the above-described methodologies in several molecular systems: A simple fluid (methane), water and a polymer (polyethylene) bulk system. Finally, for the latter we also provide reliable confidence intervals using a statistical analysis resampling technique, the bootstrap method

    Multilevel coarse graining and nano--pattern discovery in many particle stochastic systems

    Get PDF
    In this work we propose a hierarchy of Monte Carlo methods for sampling equilibrium properties of stochastic lattice systems with competing short and long range interactions. Each Monte Carlo step is composed by two or more sub - steps efficiently coupling coarse and microscopic state spaces. The method can be designed to sample the exact or controlled-error approximations of the target distribution, providing information on levels of different resolutions, as well as at the microscopic level. In both strategies the method achieves significant reduction of the computational cost compared to conventional Markov Chain Monte Carlo methods. Applications in phase transition and pattern formation problems confirm the efficiency of the proposed methods.Comment: 37 page

    Common Characteristics in Compound Formation: Evidence from Bilingual Acquisition and L2 Language Learning

    No full text
    Abstract and full text of the articles are freely available on www.degruyter.com (De Gruyter Open)
    corecore