6 research outputs found
Effect of Mg<sup>2+</sup> Cations on the Dynamics and Efficiency of Hole Transport in DNA
The effect of Mg<sup>2+</sup> cations
on the electronic spectra
and dynamics and efficiency of hole transport has been determined
by means of femtosecond time-resolved transient absorption spectroscopy
for DNA hairpins possessing stilbene electron acceptor and donor chromophores.
The results are compared with those obtained previously for the same
hairpins in the presence of Na<sup>+</sup> cations and for one hairpin
with no added salt. Quantum yields and rate constants for charge separation
are smaller in the presence of Mg<sup>2+</sup> than Na<sup>+</sup>, the largest differences being observed for the hairpins with the
largest number of base pairs. Slower charge separation is attributed
to minor groove binding by Mg<sup>2+</sup>, which results in a stiffer
duplex structure rather than a change in ground state geometry. Reduction
in the Na<sup>+</sup> concentration has little effect on either the
dynamics or efficiency of hole transport
Repair of Laser-localized DNA Interstrand Cross-links in G1 Phase Mammalian Cells*
Interstrand cross-links (ICLs) are absolute blocks to transcription and replication and can provoke genomic instability and cell death. Studies in bacteria define a two-stage repair scheme, the first involving recognition and incision on either side of the cross-link on one strand (unhooking), followed by recombinational repair or lesion bypass synthesis. The resultant monoadduct is removed in a second stage by nucleotide excision repair. In mammalian cells, there are multiple, but poorly defined, pathways, with much current attention on repair in S phase. However, many questions remain, including the efficiency of repair in the absence of replication, the factors involved in cross-link recognition, and the timing and demarcation of the first and second repair cycles. We have followed the repair of laser-localized lesions formed by psoralen (cross-links/monoadducts) and angelicin (only monoadducts) in mammalian cells. Both were repaired in G1 phase by nucleotide excision repair-dependent pathways. Removal of psoralen adducts was blocked in XPC-deficient cells but occurred with wild type kinetics in cells deficient in DDB2 protein (XPE). XPC protein was rapidly recruited to psoralen adducts. However, accumulation of DDB2 was slow and XPC-dependent. Inhibition of repair DNA synthesis did not interfere with DDB2 recruitment to angelicin but eliminated recruitment to psoralen. Our results demonstrate an efficient ICL repair pathway in G1 phase cells dependent on XPC, with entry of DDB2 only after repair synthesis that completes the first repair cycle. DDB2 accumulation at sites of cross-link repair is a marker for the start of the second repair cycle