1,241 research outputs found
Guardian\u27s Goals and Gains: The Relationship between Need Satisfaction and Parenting Goals in Parents of Toddlers
Self Determination Theory (SDT) theorizes that when three core psychological needs are met (i.e., competence, relatedness, and autonomy) then humans reach their highest level of optimization (Deci & Ryan, 2000). One common way people tend to satisfy these needs is through social relationships, typically ones where their efforts can be reciprocated; however, not all relationships are reciprocal. This study looks at the psychological needs within an asymmetrical relationship between a parent and their toddler aged child. Given an already established relationship (Smith et al. 2023) between need satisfaction and the types of goals parents have for their college aged kids (i.e., self image or compassionate goals), this study will look at whether or not there is a relationship between need satisfaction and goals in parents of toddlers. In this study I look at the relationship between need satisfaction and parenting goals in parents with 14- to 24-month-olds. I found that there was not a significant relationship between the two variables, although there was a positive correlation between autonomy and self image goals. This work suggests that there may be different relationship patterns between need satisfaction and goals when children are younger than when they reach adulthood. More work is needed to fully understand the complexities of this relationship
Steinberg modules and Donkin pairs
We prove that in positive characteristic a module with good filtration for a
group of type E6 restricts to a module with good filtration for a subgroup of
type F4. (Recall that a filtration of a module for a semisimple algebraic group
is called good if its layers are dual Weyl modules.) Our result confirms a
conjecture of Brundan for one more case. The method relies on the canonical
Frobenius splittings of Mathieu. Next we settle the remaining cases, in
characteristic not 2, with a computer-aided variation on the old method of
Donkin.Comment: 16 pages; proof of Brundan's conjecture adde
M5-branes from gauge theories on the 5-sphere
We use the 5-sphere partition functions of supersymmetric Yang-Mills theories
to explore the (2,0) superconformal theory on S^5 x S^1. The 5d theories can be
regarded as Scherk-Schwarz reductions of the 6d theory along the circle. In a
special limit, the perturbative partition function takes the form of the
Chern-Simons partition function on S^3. With a simple non-perturbative
completion, it becomes a 6d index which captures the degeneracy of a sector of
BPS states as well as the index version of the vacuum Casimir energy. The
Casimir energy exhibits the N^3 scaling at large N. The large N index for U(N)
gauge group also completely agrees with the supergravity index on AdS_7 x S^4.Comment: 44 pages, 1 figure, v4: ref added, clarified weak/strong coupling
behaviors of large N free energy, minor improvements, version to be published
in JHE
Two-Loop Polarization Contributions to Radiative-Recoil Corrections to Hyperfine Splitting in Muonium
We calculate radiative-recoil corrections of order
to hyperfine splitting in muonium generated by the
diagrams with electron and muon polarization loops. These corrections are
enhanced by the large logarithm of the electron-muon mass ratio. The leading
logarithm cubed and logarithm squared contributions were obtained a long time
ago. The single-logarithmic and nonlogarithmic contributions calculated here
improve the theory of hyperfine splitting, and affect the value of the
electron-muon mass ratio extracted from the experimental data on the muonium
hyperfine splitting.Comment: 15 pages, 11 figure
ΠΡΡΠΎΡΠΈΠ°ΡΠΈΡ Π°Π»Π»Π΅Π»ΡΠ½ΡΡ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠΎΠ² Π³Π΅Π½Π° ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΠΎΠΉ NO-ΡΠΈΠ½ΡΠ°Π·Ρ Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΡΠ΅ΡΠ΄ΡΠ° (Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠΉ ΠΎΠ±Π·ΠΎΡ)
ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ Π°Π½Π°Π»ΡΠ· Π²ΡΡΡΠΈΠ·Π½ΡΠ½ΠΈΡ
ΡΠ° Π·Π°ΠΊΠΎΡΠ΄ΠΎΠ½Π½ΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ ΡΡΠΎΡΠΎΠ²Π½ΠΎ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π²ΠΏΠ»ΠΈΠ²Ρ Π’-786Π‘, G894T, 4a/b ΠΏΠΎΠ»ΡΠΌΠΎΡΡΡΠ·ΠΌΡΠ² Π³Π΅Π½Ρ eNOS Π½Π° ΡΠΈΠ·ΠΈΠΊ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΠΠ₯Π‘ Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π½ΠΈΠΊΡΠ² ΡΡΠ·Π½ΠΈΡ
ΠΏΠΎΠΏΡΠ»ΡΡΡΠΉ. ΠΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΠΎΠ»Ρ Π’-786 Π‘ ΠΏΠΎΠ»ΡΠΌΠΎΡΡΡΠ·ΠΌΠ° Π³Π΅Π½Ρ eNOS Ρ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΠΠ₯Π‘ Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π½ΠΈΠΊΡΠ² ΡΠΏΠΎΠ½ΡΡΠΊΠΎΡ, ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠΎΡ, ΡΡΠ°Π»ΡΠΉΡΡΠΊΠΎΡ ΠΏΠΎΠΏΡΠ»ΡΡΡΡ, ΠΏΡΠΈΡΠΎΠΌΡ Π² ΠΎΡΡΠ°Π½Π½ΡΡ
Π²ΡΠ½ ΠΏΠΎΠ²βΡΠ·Π°Π½ΠΈΠΉ ΡΠ· Π±Π°Π³Π°ΡΠΎΡΡΠ΄ΠΈΠ½Π½ΠΈΠΌ ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΌ. G894T ΠΏΠΎΠ»ΡΠΌΠΎΡΡΡΠ·ΠΌ Π³Π΅Π½Ρ eNOS ΠΏΠΎΠ²βΡΠ·Π°Π½ΠΈΠΉ ΡΠ· ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½ΠΈΠΌ ΡΠΈΠ·ΠΈΠΊΠΎΠΌ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΠΠ₯Π‘, ΡΡΠ΅ΠΌΡΡΠ½ΠΈΡ
ΡΠ½ΡΡΠ»ΡΡΡΠ² Π² ΡΡΠ°Π»ΡΠΉΡΡΠΊΡΠΉ, ΡΡΡΠ΅ΡΡΠΊΡΠΉ, Π°Π·ΡΠ°ΡΡΡΠΊΡΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΡΡΡ
, Π° Π² ΡΠΎΡΡΠΉΡΡΠΊΡΠΉ β ΡΠ· ΡΠ΅ΡΡΠ΅Π½ΠΎΠ·Π°ΠΌΠΈ ΡΡΠ΅Π½ΡΡΠ². ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ Π·Π²βΡΠ·ΠΎΠΊ 4Π°/4b ΠΏΠΎΠ»ΡΠΌΠΎΡΡΡΠ·ΠΌΡ Π³Π΅Π½Ρ eNOS ΡΠ· Π²ΠΈΠ½ΠΈΠΊΠ½Π΅Π½Π½ΡΠΌ ΠΠ₯Π‘ Ρ ΡΡΡΠ΅ΡΡΠΊΡΠΉ, ΡΠΏΠΎΠ½ΡΡΠΊΡΠΉ, ΠΊΠΎΡΠ΅ΠΉΡΡΠΊΡΠΉ, Π°ΡΡΠΎ-Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΡΠΊΡΠΉ, ΡΡΠ°Π½ΡΡΠΊΡΠΉ, ΡΠΎΡΡΠΉΡΡΠΊΡΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΡΡΡ
, Π° Π² ΡΠΏΠΎΠ½ΡΡΠΊΡΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΡΡ β Π³Π΅Π½Π΄Π΅ΡΠ½Π° ΡΠΏΠ΅ΡΠΈΡΡΠΊΠ° Π΄Π°Π½ΠΎΡ Π°ΡΠΎΡΡΠ°ΡΡΡ. Π ΠΎΠΊΡΠ΅ΠΌΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½ΡΡ
ΠΎΡΡΠΈΠΌΠ°Π½Ρ ΡΡΠΏΠ΅ΡΠ΅ΡΠ»ΠΈΠ²Ρ Π΄Π°Π½Ρ ΡΠΎΠ΄ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρ Π’-786 Π‘ ΠΏΠΎΠ»ΡΠΌΠΎΡΡΡΠ·ΠΌΡ Π³Π΅Π½Ρ eNOS Π² ΡΡΡΠ΅ΡΡΠΊΡΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΡΡ. ΠΠ΅ Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ Π°ΡΠΎΡΡΠ°ΡΡΡ 4Π°/4b ΠΏΠΎΠ»ΡΠΌΠΎΡΡΡΠ·ΠΌΡ Π³Π΅Π½Ρ eNOS Ρ ΡΠΎΠ»ΠΎΠ²ΡΠΊΡΠ² Π‘Π»ΠΎΠ²Π΅Π½ΡΡ, Π€ΡΠ½Π»ΡΠ½Π΄ΡΡ, G894T ΠΏΠΎΠ»ΡΠΌΠΎΡΡΡΠ·ΠΌΡ Π³Π΅Π½Ρ eNOS Ρ ΠΊΠΎΡΠ΅ΠΉΡΡΠΊΡΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΡΡ, Π° Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π½ΠΈΠΊΡΠ² Π±ΡΠ»ΠΎΡ Π°Π²ΡΡΡΠ°Π»ΡΠΉΡΡΠΊΠΎΡ ΠΏΠΎΠΏΡΠ»ΡΡΡΠΉ Π½Π΅ Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ Π°ΡΠΎΡΡΠ°ΡΡΡ Π³Π΅Π½ΠΎΡΠΈΠΏΡΠ² 4Π°/4b, G894T, Π’-786Π‘ ΠΏΠΎΠ»ΡΠΌΠΎΡΡΡΠ·ΠΌΡ Π³Π΅Π½Ρ eNOS ΡΠ· ΡΠΈΠ·ΠΈΠΊΠΎΠΌ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΠΠ₯Π‘.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈ Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π½ΡΡ
ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π²Π»ΠΈΡΠ½ΠΈΡ Π’-786Π‘, G894T, 4a/b ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠΎΠ² Π³Π΅Π½Π° eNOS Π½Π° ΡΠΈΡΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠΠ‘ Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ. ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠΎΠ»Ρ Π’-786 Π‘ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° Π³Π΅Π½Π° eNOS Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΠΠΠ‘ Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΉ ΡΠΏΠΎΠ½ΡΠΊΠΎΠΉ, ΡΠΊΡΠ°ΠΈΠ½ΡΡΠΊΠΎΠΉ, ΠΈΡΠ°Π»ΡΡΠ½ΡΠΊΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ, ΠΏΡΠΈΡΠ΅ΠΌ Ρ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ
ΠΎΠ½ ΡΠ²ΡΠ·Π°Π½ Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠΎΡΡΠ΄ΠΈΡΡΡΠΌ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ. G894T ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌ Π³Π΅Π½Π° eNOS ΡΠ²ΡΠ·Π°Π½ Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΡΠΌ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠ₯Π‘, ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ½ΡΡΠ»ΡΡΠΎΠ² Π² ΠΈΡΠ°Π»ΡΡΠ½ΡΠΊΠΎΠΉ, ΡΡΡΠ΅ΡΠΊΠΎΠΉ, Π°Π·ΠΈΠ°ΡΡΠΊΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΡΡ
, Π° Π² ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ β Ρ ΡΠ΅ΡΡΠ΅Π½ΠΎΠ·Π°ΠΌΠΈ ΡΡΠ΅Π½ΡΠΎΠ². ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ²ΡΠ·Ρ 4Π°/4b ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° Π³Π΅Π½Π° eNOS Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ΠΌ ΠΠΠ‘ Π² ΡΡΡΠ΅ΡΠΊΠΎΠΉ, ΡΠΏΠΎΠ½ΡΠΊΠΎΠΉ, ΠΊΠΎΡΠ΅ΠΉΡΠΊΠΎΠΉ, Π°ΡΡΠΎ-Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΎΠΉ, ΠΈΡΠ°Π½ΡΡΠΊΠΎΠΉ, ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΡΡ
, Π° Π² ΡΠΏΠΎΠ½ΡΠΊΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ β Π³Π΅Π½Π΄Π΅ΡΠ½Π°Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠ° Π΄Π°Π½Π½ΠΎΠΉ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΠΈ. Π ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ
ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΠ²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠΈ Π’-786 Π‘ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° Π³Π΅Π½Π° eNOS Π² ΡΡΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ. ΠΠ΅ Π²ΡΡΠ²Π»Π΅Π½ΠΎ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΠΈ 4Π°/4b ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° Π³Π΅Π½Π° eNOS Ρ ΠΌΡΠΆΡΠΈΠ½ Π‘Π»ΠΎΠ²Π΅Π½ΠΈΠΈ, Π€ΠΈΠ½Π»ΡΠ½Π΄ΠΈΠΈ, G894T ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΠ° Π³Π΅Π½Π° eNOS Π² ΠΊΠΎΡΠ΅ΠΉΡΠΊΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ, Π° Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»Π΅ΠΉ Π±Π΅Π»ΠΎΠΉ Π°Π²ΡΡΡΠ°Π»ΠΈΠΉΡΠΊΠΎΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ Π½Π΅ Π²ΡΡΠ²Π»Π΅Π½ΠΎ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΠΈ Π³Π΅Π½ΠΎΡΠΈΠΏΠΎΠ² 4Π°/4b, G894T, Π’-786Π‘ ΠΏΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌΡ Π³Π΅Π½Ρ eNOS Ρ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠΠ‘.The article analyzed Ukrainian and foreign research on the impact
study T-786Π‘, G894T, 4a /b polymorphisms of the eNOS gene on the
risk of coronary artery disease (CAD) among representatives of different
populations. The role of T-786C polimorphism of the eNOS gene
was proven in the development of CAD among Japanese, Ukrainian,
Italian population, and in the past it is associated with multivessel disease.
G894T polymorphism of the eNOS gene is associated with high
risk of CAD, ischemic stroke in Italian, Turkish, Asian populations. In
the Russian population this polymorphism assotiated with restenosis of
stents. The 4a/4b polymorphism of the eNOS gene has significant influence
on risk of CAD in Turkish, Japanese, Korean, AfricanAmerican,
Iranian and Russian populations. Japanese population has
gender specificity of the association. Conflicting data obtained in separate
studies of the influence of T-786C polymorphism of the eNOS
gene in the Turkish population. There was no association 4a /4b polymorphism
of the eNOS gene in men Sloveniaβs men and in Finland.
Wasnβt identify association of G894T polymorphism of the eNOS
gene in Korean population. Wasnβt detected association of genotypes
4a/4b, G894T, T-786S of the eNOS gene polymorphisms with risk of
CAD in white Australians.
Due to the existence of common pathogenetic mechanisms, involving
NO, polymorphism eNOS gene presence may increases the risk of
developing COPD. So perspective is study of polymorphisms eNOS
gene in patients with COPD and CAD of Ukrainian population. Investigate
their role as candidate genes can help to predict and prevent the
appearance of comorbid disorders
5-dim Superconformal Index with Enhanced En Global Symmetry
The five-dimensional supersymmetric gauge theory with Sp(N)
gauge group and SO(2N_f) flavor symmetry describes the physics on N D4-branes
with D8-branes on top of a single O8 orientifold plane in Type I' theory.
This theory is known to be superconformal at the strong coupling limit with the
enhanced global symmetry for . In this work we calculate
the superconformal index on for the Sp(1) gauge theory by the
localization method and confirm such enhancement of the global symmetry at the
superconformal limit for to a few leading orders in the chemical
potential. Both perturbative and (anti)instanton contributions are present in
this calculation. For cases some issues related the pole structure of
the instanton calculation could not be resolved and here we could provide only
some suggestive answer for the leading contributions to the index. For the
Sp(N) case, similar issues related to the pole structure appear.Comment: 70 pages, references added, published versio
Predatory Bacteria: A Potential Ally against Multidrug-Resistant Gram-Negative Pathogens
Multidrug-resistant (MDR) Gram-negative bacteria have emerged as a serious threat to human and animal health. Bdellovibrio spp. and Micavibrio spp. are Gram-negative bacteria that prey on other Gram-negative bacteria. In this study, the ability of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to prey on MDR Gram-negative clinical strains was examined. Although the potential use of predatory bacteria to attack MDR pathogens has been suggested, the data supporting these claims is lacking. By conducting predation experiments we have established that predatory bacteria have the capacity to attack clinical strains of a variety of Γ-lactamase-producing, MDR Gram-negative bacteria. Our observations indicate that predatory bacteria maintained their ability to prey on MDR bacteria regardless of their antimicrobial resistance, hence, might be used as therapeutic agents where other antimicrobial drugs fail. Β© 2013 Kadouri et al
Exploring Curved Superspace
We systematically analyze Riemannian manifolds M that admit rigid
supersymmetry, focusing on four-dimensional N=1 theories with a U(1)_R
symmetry. We find that M admits a single supercharge, if and only if it is a
Hermitian manifold. The supercharge transforms as a scalar on M. We then
consider the restrictions imposed by the presence of additional supercharges.
Two supercharges of opposite R-charge exist on certain fibrations of a
two-torus over a Riemann surface. Upon dimensional reduction, these give rise
to an interesting class of supersymmetric geometries in three dimensions. We
further show that compact manifolds admitting two supercharges of equal
R-charge must be hyperhermitian. Finally, four supercharges imply that M is
locally isometric to M_3 x R, where M_3 is a maximally symmetric space.Comment: 39 pages; minor change
Twistors, Harmonics and Holomorphic Chern-Simons
We show that the off-shell N=3 action of N=4 super Yang-Mills can be written
as a holomorphic Chern-Simons action whose Dolbeault operator is constructed
from a complex-real (CR) structure of harmonic space. We also show that the
local space-time operators can be written as a Penrose transform on the coset
SU(3)/(U(1) \times U(1)). We observe a strong similarity to ambitwistor space
constructions.Comment: 34 pages, 3 figures, v2: replaced with published version, v3: Added
referenc
- β¦