125 research outputs found

    The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars

    Full text link
    We establish new constraints on the intermediate-mass range of the initial-final mass relation by studying white dwarfs in four young star clusters, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). We show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with MinitialM_{\rm initial} = 1.6 to 2.0 MM_\odot. At larger masses, the core-mass growth decreases steadily to \sim10% at MinitialM_{\rm initial} = 3.4 MM_\odot. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. (2013). We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at tt \sim 3 Myr and EE = 1.2 ×\times 1010^{10} LL_\odot yr for MinitialM_{\rm initial} \sim 2 MM_\odot (tt \sim 2 Myr for luminosities brighter than the RGB tip at log(L/L)\log(L/L_{\odot}) >> 3.4), decreasing to tt = 0.4 Myr and EE = 6.1 ×\times 109^{9} LL_\odot yr for stars with MinitialM_{\rm initial} \sim 3.5 MM_\odot. The implications of these results are discussed with respect to general population synthesis studies that require correct modeling of the TP-AGB phase of stellar evolution.Comment: 14 pages, 7 figures, 4 tables. Accepted for publication in Ap

    The Spectral Types of White Dwarfs in Messier 4

    Full text link
    We present the spectra of 24 white dwarfs in the direction of the globular cluster Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. Determining the spectral types of the stars in this sample, we find 24 type DA and 0 type DB (i.e., atmospheres dominated by hydrogen and helium respectively). Assuming the ratio of DA/DB observed in the field with effective temperature between 15,000 - 25,000 K, i.e., 4.2:1, holds for the cluster environment, the chance of finding no DBs in our sample due simply to statistical fluctuations is only 6 X 10^(-3). The spectral types of the ~100 white dwarfs previously identified in open clusters indicate that DB formation is strongly suppressed in that environment. Furthermore, all the ~10 white dwarfs previously identified in other globular clusters are exclusively type DA. In the context of these two facts, this finding suggests that DB formation is suppressed in the cluster environment in general. Though no satisfactory explanation for this phenomenon exists, we discuss several possibilities.Comment: Accepted for Publication in Astrophys. J. 11 pages including 4 figures and 2 tables (journal format

    The Masses of Population II White Dwarfs

    Full text link
    Globular star clusters are among the first stellar populations to have formed in the Milky Way, and thus only a small sliver of their initial spectrum of stellar types are still burning hydrogen on the main-sequence today. Almost all of the stars born with more mass than 0.8 M_sun have evolved to form the white dwarf cooling sequence of these systems, and the distribution and properties of these remnants uniquely holds clues related to the nature of the now evolved progenitor stars. With ultra-deep HST imaging observations, rich white dwarf populations of four nearby Milky Way globular clusters have recently been uncovered, and are found to extend an impressive 5 - 8 magnitudes in the faint-blue region of the H-R diagram. In this paper, we characterize the properties of these population II remnants by presenting the first direct mass measurements of individual white dwarfs near the tip of the cooling sequence in the nearest of the Milky Way globulars, M4. Based on Gemini/GMOS and Keck/LRIS multiobject spectroscopic observations, our results indicate that 0.8 M_sun population II main-sequence stars evolving today form 0.53 +/- 0.01 M_sun white dwarfs. We discuss the implications of this result as it relates to our understanding of stellar structure and evolution of population II stars and for the age of the Galactic halo, as measured with white dwarf cooling theory.Comment: Accepted for Publication in Astrophys. J. on Aug. 05th, 2009. 19 pages including 9 figures and 2 tables (journal format
    corecore