232 research outputs found

    Spontaneous emission of non-dispersive Rydberg wave packets

    Get PDF
    Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the frequency of the driving field) dominates the spectrum in the semiclassical limit, contrary to earlier predictions. We calculate the frequencies of single photon emissions and the associated rates in the "harmonic approximation", i.e. when the wave packet has approximately a Gaussian shape. The results agree well with exact quantum mechanical calculations, which validates the analytical approach.Comment: 14 pages, 4 figure

    Depletion of a Bose-Einstein condensate by laser-iduced dipole-dipole interactions

    Full text link
    We study a gaseous Bose-Einstein condensate with laser-induced dipole-dipole interactions using the Hartree-Fock-Bogoliubov theory within the Popov approximation. The dipolar interactions introduce long-range atom-atom correlations, which manifest themselves as increased depletion at momenta similar to that of the laser wavelength, as well as a "roton" dip in the excitation spectrum. Surprisingly, the roton dip and the corresponding peak in the depletion are enhanced by raising the temperature above absolute zero.Comment: 10 pages, 6 figure

    Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 3rd-5th, 2020, Italy)

    Get PDF
    Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd–5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine

    Acetylsalicylic acid as an adjuvant therapy for schizophrenia

    Get PDF
    BACKGROUND: Findings from both epidemiological and basic research point to the possibility that NSAIDS impede the deterioration in schizophrenia. METHODS: To study the efficacy of acetylsalicylic acid we will perform a randomized placebo controlled double-blind add-on trial of 80 inpatients and outpatients with schizophrenia, schizophreniform or schizoaffective disorder. Patients will be 1:1 randomized to either 3 months 1000 mg acetylsalicylic acid per day or 3 months placebo, in addition to their regular antipsychotic treatment. All patients will receive pantoprazole treatment for gastroprotection. The outcomes of this study are 3-month change in psychotic and negative symptom severity, cognitive function, and several immunological parameters. This trial may (1) yield a new (adjuvant) therapy for schizophrenia and (2) add to the knowledge on the pathogenesis of this major psychiatric disorder

    Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Get PDF
    Background: The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL)-4 gene transfected fibroblasts. Methods: In University of Pittsburgh Cancer Institute (UPCI) protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM) or anaplastic astrocytoma (AA) received gross total resection (GTR) of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC) loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion: In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN)-γ Enzyme-Linked Immuno-SPOT (ELISPOT) assay in another human leukocyte antigen (HLA)-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA) epitope EphA2883-891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants received scheduled vaccinations with no incidence of major adverse events. Monocyte-derived DCs produced high levels of IL-12 p70. Treatment was well tolerated; however, we were unable to observe detectable IFN-γ post-vaccine responses or prolonged progression-free survival in these participants. Conclusion: Feasibility challenges inherent in the generation of a patient-specific gene transfection-based vaccine strongly suggests the need for more practical formulations that would allow for the timely administration of vaccines. Nevertheless, successful generation of type-1 DCs and preliminary safety in the current study provide a strong rationale for further efforts to develop novel glioma vaccines. © 2007 Okada et al; licensee BioMed Central Ltd

    Deficient activation of CD95 (APO-1/ Fas)-mediated apoptosis: a potential factor of multidrug resistance in human renal cell carcinoma

    Get PDF
    The pronounced resistance of human renal cell carcinoma (RCC) to anticancer-induced apoptosis has primarily been related to the expression of P-glycoprotein and effective drug detoxification mechanisms. Because the CD95 system has recently been identified as a key mediator of anticancer drug-induced apoptosis, we analysed the contribution of the CD95 system to chemotherapy-induced apoptosis in four newly established RCC cell lines. Here, we demonstrate that all RCC cell lines expressed CD95-receptor and -ligand. Exposure to agonistic anti-CD95 antibodies resulted in induction of apoptosis and significant (P< 0.05) reduction of cell number in three out of four cell lines, indicating that the essential components for CD95-mediated apoptosis were present and functionally intact in the majority of these RCC cell lines. Moreover, treatment of cultures with bleomycin or topotecan, a novel topoisomerase I inhibitor with little substrate affinity for P-glycoprotein, led to induction of apoptosis and significant (P< 0.05) dose-dependent reduction of cell number in all RCC cell lines. Both anticancer drugs also induced upregulation of CD95 ligand expression in all cell lines. Additionally, augmentation of CD95 receptor expression was found in three RCC cell lines, including one p53-mutated cell line, whereas another p53-mutated cell line showed no or only a weak CD95 receptor upregulation after exposure to topotecan or bleomycin, respectively. Despite this upregulation of CD95 receptor and ligand, antagonistic antibodies directed against CD95 receptors or ligands could not inhibit induction of apoptosis by topotecan and bleomycin in any cell line. Thus, although a functionally intact CD95 signalling cascade is present in most RCC cell lines, the anticancer drugs topotecan and bleomycin that induce upregulation of CD95 receptor and ligand fail to effectively activate CD95-mediated apoptosis. This deficient activation of CD95-mediated apoptosis might be an important additional factor for the multidrug resistance phenotype of human RCCs. © 2000 Cancer Research Campaig

    Dendritic cell vaccination and immune monitoring

    Get PDF
    We exploited dendritic cells (DC) to vaccinate melanoma patients. We recently demonstrated a statistical significant correlation between favorable clinical outcome and the presence of vaccine-related tumor antigen-specific T cells in delayed type hypersensitivity (DTH) skin biopsies. However, favorable clinical outcome is only observed in a minority of the treated patients. Therefore, it is obvious that current DC-based protocols need to be improved. For this reason, we study in small proof of principle trials the fate, interactions and effectiveness of the injected DC
    • …
    corecore