516 research outputs found

    Response of selected hormonal markers during training cycles on indian female swimmers

    Get PDF
    The present study was taken up to monitor the fluctuations of the hormones testosterone, cortisol and T/C (Testosterone/Cortisol) ratio concentrations during the three phases of training namely preparatory phase, pre-competitive phase and competitive phase in Indian female swimmers. Blood samples were collected at the completion of each phase to study the impact of training on these hormones. Our results reveal that the testosterone and T/C ratio significantly decreases whereas cortisol increases in the subsequent periodised cycle and it was due to the intensity and volume of training. Our study concludes that the intensity and volume of training has effects on these hormones and also, a swimmer with higher testosterone, lowest cortisol and highest T/C ratio has the highest percentage difference of performance record between the preparatory and competitive phase. Hence, monitoring of these hormones is essential to avoid overtraining and to enhance the performance of the swimmers

    Prolonged intralymphatic delivery of dendritic cells through implantable lymphatic ports in patients with advanced cancer

    Get PDF
    Background: The currently-used modes of administration of immunotherapeutic agents result in their limited delivery to the lymph nodes and/or require repetitive ultrasound-guided nodal injections or microsurgical lymphatic injections, limiting their feasibility. Here, we report on the feasibility and safety of a new method of long-term repetitive intralymphatic (IL) infusion of immune cells, using implantable delivery ports. Methods: Nine patients with stage IV recurrent colorectal cancer underwent complete resection and received autologous dendritic cells (DCs) loaded with killed autologous tumor cells, KLH and PADRE, for up to four monthly cycles. Leg lymphatic vessels were cannulated, connected to 6.6Fr low-profile implantable subcutaneous delivery ports, and used to infuse 12 doses of DC over each 72 h-long cycle (every 6 h), followed by heparin flushes of the cannula-port system (one 72 h-long cycle per month). The patients who opted for alternative route of vaccine administration (2 patients) or whose ports became non-functional between cycles, continued treatment via intranodal (one injection/cycle) or intradermal (four injections/cycle) routes. Results: A total of nine lymphatic cannulations and implantations of subcutaneous delivery ports were attempted in seven patients, with a success rate of eight out of nine (89 %). The average patency of the IL delivery system was 7.5 (±3.2) weeks. All six patients with IL ports successfully completed at least one complete 72 h-long DC infusion cycle (12 injections). Five patients (56 %) completed two full IL cycles (24 IL injections). No patients received more than two IL cycles without replacement of the IL port, due to catheter occlusion and/or local side effects: cellulitis and hematoma. Intranodal and intradermal backup options were used in, respectively, one and two patients. Overall cohort survival was >28 (±25) months. One patient with aggressive recurrent carcinomatosis, who received DC vaccines by intranodal route is alive at > 90 months, without evidence of disease. Conclusions: We conclude that an intermediate-duration IL delivery of multiple doses of immunotherapeutic factors using implantable delivery ports is feasible, highly-tolerable and can be reproducibly performed in cancer patients to administer immune cells, or potentially, other immune factors. However, long-term IL port placement (>7.5 weeks), is not a currently-feasible option. Trial registration:NCT00558051 , registered Nov. 13, 2007

    Depletion of a Bose-Einstein condensate by laser-iduced dipole-dipole interactions

    Full text link
    We study a gaseous Bose-Einstein condensate with laser-induced dipole-dipole interactions using the Hartree-Fock-Bogoliubov theory within the Popov approximation. The dipolar interactions introduce long-range atom-atom correlations, which manifest themselves as increased depletion at momenta similar to that of the laser wavelength, as well as a "roton" dip in the excitation spectrum. Surprisingly, the roton dip and the corresponding peak in the depletion are enhanced by raising the temperature above absolute zero.Comment: 10 pages, 6 figure

    Spontaneous emission of non-dispersive Rydberg wave packets

    Get PDF
    Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the frequency of the driving field) dominates the spectrum in the semiclassical limit, contrary to earlier predictions. We calculate the frequencies of single photon emissions and the associated rates in the "harmonic approximation", i.e. when the wave packet has approximately a Gaussian shape. The results agree well with exact quantum mechanical calculations, which validates the analytical approach.Comment: 14 pages, 4 figure

    Combination of IFNα and poly-I: C reprograms bladder cancer microenvironment for enhanced CTL attraction

    Get PDF
    Background: BCG is a prototypal cancer immunotherapeutic factor currently approved of bladder cancer. In attempt to further enhance the effectiveness of immunotherapy of bladder cancer and, potentially, other malignancies, we evaluated the impact of BCG on local production of chemokines attracting the desirable effector CD8+ T cells (CTLs) and undesirable myeloid-derived suppressor cell (MDSCs) and regulatory T(reg) cells, and the ability of bladder cancer tissues to attract CTLs.Methods: Freshly resected bladder cancer tissues were either analyzed immediately or cultured ex vivo in the absence or presence of the tested factors. The expression of chemokine genes, secretion of chemokines and their local sources in freshly harvested and ex vivo-treated tumor explants were analyzed by quantitative PCR (Taqman), ELISAs and immunofluorescence/confocal microscopy. Migration of CTLs was evaluated ex vivo, using 24-transwell plates. Spearman correlation was used for correlative analysis, while paired Students T test or Wilcoxon was used for statistical analysis of the data.Results: Bladder cancer tissues spontaneously expressed high levels of the granulocyte/MDSC-attractant CXCL8 and Treg-attractant CCL22, but only marginal levels of the CTL-attracting chemokines: CCL5, CXCL9 and CXCL10. Baseline CXCL10 showed strong correlation with local expression of CTL markers. Unexpectedly, BCG selectively induced only the undesirable chemokines, CCL22 and CXCL8, but had only marginal impact on CXCL10 production. In sharp contrast, the combination of IFNα and a TLR3 ligand, poly-I:C (but not the combinations of BCG with IFNα or BCG with poly-I:C), induced high levels of intra-tumoral production of CXCL10 and promoted CTL attraction. The combination of BCG with IFNα + poly-I:C regimen did not show additional advantage.Conclusions: The current data indicate that suboptimal ability of BCG to reprogram cancer-associated chemokine environment may be a factor limiting its therapeutic activity. Our observations that the combination of BCG with (or replacement by) IFNα and poly-I:C allows to reprogram bladder cancer tissues for enhanced CTL entry may provide for new methods of improving the effectiveness of immunotherapy of bladder cancer, helping to extend BCG applications to its more advanced forms, and, potentially, other diseases

    Selective costimulation by IL-15R/IL-15, but not IL-2R/IL-2, allows the induction of high numbers of tumor-specific CD8+ T cells by human dendritic cells matured in conditions of acute inflammation

    Get PDF
    Conventional dendritic cells (DC) are believed to rely on membrane-bound IL-2Rα to trans-present soluble IL-2 and costimulate T cell activation and expansion. In contrast, Langerhans cells have been shown to use membrane-bound IL-15Rα/IL-15 complex to activate T cells. Here we show that, while the expansion of tumor-specific CD8+ T cells by DC matured in the presence of chronic inflammatory mediators (PGE2, TNFα IL-1β, IL-6) fully depends on expression of IL-2Rα, CD8+ T cell expansion induced by IL-12p70-producing DC matured by interferon's and Toll-Like receptor ligands (type-1-polarized; DC1) is both more effective and independent of IL-2Rα expression. While DC1-expressed IL-15Rα promotes the expansion of tetramer-specific CD8+ T cells, their secreted levels of IL-12p70 determines the degree of CD8+ T cell functionality as evidenced by tumor antigen-specific release of IFNγ and TNFα. In accordance with the in vivo advantage of utilizing an IL-2-independent pathway of costimulation of tumor-specific T cells, in a retrospectively analyzed cohort of patients with metastatic malignant melanoma treated with cyclophosphamide and tumor-antigen transfected DCs (NCT00978913) we observed a highly significant inverse relation between overall survival and expression of IL-2Rα on DC vaccine products (p = 0.009). The differential usage of IL-2Rα/IL-2 versus IL-15Rα/IL-15 pathways by subsets of DCs helps to explain the role of different types of inflammation in memory formation, exhaustion of CD8+ T cell responses and progression of cancer. Furthermore, ex vivo induction of IL-15Rα/IL-15 dependent signaling might improve adoptive T cell therapies targeting tumors with well-defined and undefined tumor rejection antigens

    IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells

    Get PDF
    Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al

    Ex-Th17 Foxp3+ T cells - a novel subset of Foxp3+ T cells induced in cancer

    Get PDF
    Th17 and regulatory T (Treg) cells are integral in maintaining immune homeostasis and Th17-Treg misbalance associates with inflammation.\ud \ud We demonstrate that in addition to natural (n)Treg and induced (i)Treg cells developed from naïve precursors, Th17 cells are a novel source of Foxp3+ cells by converting into ex-Th17 Foxp3+ cells, and this helps to reconcile the contradictory information about the relevance in particularly of Th17 subset in immune surveillance.\ud \ud We identified IL-17A+Foxp3+ double-positive and ex-IL-17-producing IL-17A-Foxp3+ T cells to be the underlying mechanism of immune regulation in mesenchymal stem cell-mediated prolonged allograft survival. Further, we identified accumulation of IL17A+Foxp3+ and ex-Th17 Foxp3+ cells in tumor bearing mice, indicating progressive direct Th17-into-Treg cell conversion as a novel phenomenon in cancer.\ud \ud Moreover, we determined the importance of the Th17 cell plasticity for tumor induction and/or progression in ROR-g-/- mice. Our data indicate that RORgt is required not only for Th17 development, but also for effective Treg cell induction. TGF-b1 induced Foxp3 expression was reduced in ROR-g -/- cells. Further, tumor bearing ROR-g-/- mice showed significantly less Foxp3+ Treg cells, but higher IFNg+ Tcells compared to wild type animals.\ud \ud Increased infiltration of IL17+ and FoxP3+ CD4+ T cells in the human ovarian cancer ascites, with the presence of a distinct IL17+FoxP3+ subset, and a significant correlation between tumor-associated Th17 and Treg cells demonstrates the existence of Th17-Foxp3+ T cell inter-relationship in cancer patients.\ud \ud Yin-yang of IL17+ and Foxp3+ is important principle for improved clinical approaches targeting responses against self, allo and/or neo-self

    Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 3rd-5th, 2020, Italy)

    Get PDF
    Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd–5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine
    • …
    corecore