17 research outputs found

    Embryonic caffeine exposure induces adverse effects in adulthood

    No full text
    The purpose of this study was to determine both the short-term effects on cardiac development and embryo growth and the long-term effects on cardiac function and body composition of in utero caffeine exposure. Pregnant mice (C57BL/6) were exposed to hypoxia (10% O2) or room air from embryonic days (E) 8.5–10.5, and treated with caffeine (20 mg/kg, i.p.) or vehicle (normal saline, 0.9% NaCl). This caffeine dose results in a circulating level that is equivalent to 2 cups of coffee in humans. Hypoxic exposure acutely reduced embryonic growth by 30%. Exposure to a single dose of caffeine inhibited cardiac ventricular development by 53% in hypoxia and 37% in room air. Caffeine exposure resulted in inhibition of hypoxia-induced HIF1α protein expression in embryos by 40%. When offspring from dams treated with a single dose of caffeine were studied in adulthood, we observed that caffeine treatment alone resulted in a decrease in cardiac function of 38%, as assessed by echocardiography. We also observed a 20% increase in body fat with male mice exposed to caffeine. Caffeine was dissolved in normal saline, so it was used as a control. Room air controls were used to compare to the hypoxic mice. Exposure to a single dose of caffeine during embryogenesis results in both short-term effects on cardiac development and long-term effects on cardiac function.—Wendler, C. C., Busovsky-McNeal, M., Ghatpande, S., Kalinowski, A., Russell, K. S., Rivkees, S. A. Embryonic caffeine exposure induces adverse effects in adulthood

    Metalloproteinase-dependent cleavage of neuregulin and autocrine stimulation of vascular endothelial cells

    No full text
    Inflammation is often accompanied by robust angiogenesis. Vascular endothelial cells (ECs) express erbB receptors and their ligand, neuregulin-1, and can respond to neuregulin by proliferation and angiogenesis. We hypothesized that some growth factor-like responses of ECs to inflammatory cytokines can be explained by cleavage of transmembrane neuregulin with subsequent release of its extracellular epidermal growth factor-like-containing domain and autocrine activation. Using a model of cultured human ECs, we found that interleukin-6 or interferon-γ causes rapid cleavage and release of transmembrane neuregulin. Inhibitors of metalloproteinases abolish this effect. The addition of an inhibitor of tumor necrosis factor-α converting enzyme (TACE) blocks cytokine-induced neuregulin release. Silencing of TACE expression increases the amount of basal proneuregulin present in ECs but does not block neuregulin release in response to phorbol myristate acetate (PMA), suggesting that other proteinases are responsible for mediating protein kinase C-dependent cleavage. Cytokines capable of inducing neuregulin cleavage stimulated ERK activation and in vitro angiogenesis (Matrigel cord formation). This effect is blocked by inhibitors that block neuregulin cleavage, erbB protein tyrosine kinase inhibitors, or antineuregulin-neutralizing antibodies. Cytokine-activated metalloproteinase cleavage of neuregulin may play an important role in autocrine activation of EC signaling pathways, contributing to key biological effects, perhaps including inflammation-associated angiogenesis.—Kalinowski, A., Plowes, N. J. R., Huang, Q., Berdejo-Izquierdo, C., Russell, R. R., Russell, K. S. Metalloproteinase-dependent cleavage of neuregulin and autocrine stimulation of vascular endothelial cells

    Respiratory virus-induced EGFR activation suppresses IRF1-dependent Interferon-λ and antiviral defense in airway epithelium

    No full text
    Viruses suppress host responses to increase infection, and understanding these mechanisms has provided insights into cellular signaling and led to novel therapies. Many viruses (e.g., Influenza virus, Rhinovirus [RV], Cytomegalovirus, Epstein-Barr virus, and Hepatitis C virus) activate epithelial epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, but the role of EGFR in viral pathogenesis is not clear. Interferon (IFN) signaling is a critical innate antiviral host response and recent experiments have implicated IFN-λ, a type III IFN, as the most significant IFN for mucosal antiviral immune responses. Despite the importance of IFN-λ in epithelial antiviral responses, the role and mechanisms of epithelial IFN-λ signaling have not been fully elucidated. We report that respiratory virus-induced EGFR activation suppresses endogenous airway epithelial antiviral signaling. We found that Influenza virus– and RV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1–induced IFN-λ production and increased viral infection. In addition, inhibition of EGFR during viral infection augmented IRF1 and IFN-λ, which resulted in decreased viral titers in vitro and in vivo. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies

    EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production.

    No full text
    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies

    EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production

    No full text
    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies

    Respiratory virus–induced EGFR activation suppresses IRF1-dependent interferon λ and antiviral defense in airway epithelium

    No full text
    Viruses suppress host responses to increase infection, and understanding these mechanisms has provided insights into cellular signaling and led to novel therapies. Many viruses (e.g., Influenza virus, Rhinovirus [RV], Cytomegalovirus, Epstein-Barr virus, and Hepatitis C virus) activate epithelial epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, but the role of EGFR in viral pathogenesis is not clear. Interferon (IFN) signaling is a critical innate antiviral host response and recent experiments have implicated IFN-λ, a type III IFN, as the most significant IFN for mucosal antiviral immune responses. Despite the importance of IFN-λ in epithelial antiviral responses, the role and mechanisms of epithelial IFN-λ signaling have not been fully elucidated. We report that respiratory virus-induced EGFR activation suppresses endogenous airway epithelial antiviral signaling. We found that Influenza virus– and RV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1–induced IFN-λ production and increased viral infection. In addition, inhibition of EGFR during viral infection augmented IRF1 and IFN-λ, which resulted in decreased viral titers in vitro and in vivo. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies
    corecore