5,843 research outputs found
Experimental and Theoretical Investigation into the Effect of the Electron Velocity Distribution on Chaotic Oscillations in an Electron Beam under Virtual Cathode Formation Conditions
The effect of the electron transverse and longitudinal velocity spread at the
entrance to the interaction space on wide-band chaotic oscillations in intense
multiple-velocity beams is studied theoretically and numerically under the
conditions of formation of a virtual cathode. It is found that an increase in
the electron velocity spread causes chaotization of virtual cathode
oscillations. An insight into physical processes taking place in a virtual
cathode multiple velocity beam is gained by numerical simulation. The
chaotization of the oscillations is shown to be associated with additional
electron structures, which were separated out by constructing charged particle
distribution functions.Comment: 9 pages, 8 figure
The 2mrad crossing angle scheme for the international linear collider
http://cern.ch/AccelConf/e08/papers/mopp005.pdfInternational audienceThe present baseline configuration of the ILC has a 14 mrad crossing angle between the beams at the interaction point. This allows easier extraction of the beams after col- lisions, but imposes on the other hand more constraints on the control of the beams prior to colliding them. More- over, some limitations to physics capabilities arise, in par- ticular because of the degraded very forward electromag- netic detector hermeticity and because calibration proce- dures for (gaseous) tracking detectors become more com- plex. To mitigate these problems, alternative configurations with very small crossing angles are studied. A new version of the 2 mrad layout was designed last year, based on sim- pler concepts and assumptions. The emphasis of this new scheme was to satisfy specifications with as few and feasi- ble magnets as possible, in order to reduce costs
Impact of the tip radius on the lateral resolution in piezoresponse force microscopy
We present a quantitative investigation of the impact of tip radius as well
as sample type and thickness on the lateral resolution in piezoresponse force
microscopy (PFM) investigating bulk single crystals. The observed linear
dependence of the width of the domain wall on the tip radius as well as the
independence of the lateral resolution on the specific crystal-type are
validated by a simple theoretical model. Using a Ti-Pt-coated tip with a
nominal radius of 15 nm the so far highest lateral resolution in bulk crystals
of only 17 nm was obtained
Finite size and intrinsic field effect on the polar-active properties of the ferroelectric-semiconductor heterostructures
Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium
distributions of electric field, polarization and space charge in the
ferroelectric-semiconductor heterostructures containing proper or incipient
ferroelectric thin films. The role of the polarization gradient and intrinsic
surface energy, interface dipoles and free charges on polarization dynamics are
specifically explored. The intrinsic field effects, which originated at the
ferroelectric-semiconductor interface, lead to the surface band bending and
result into the formation of depletion space-charge layer near the
semiconductor surface. During the local polarization reversal (caused by the
inhomogeneous electric field induced by the nanosized tip of the Scanning Probe
Microscope (SPM) probe) the thickness and charge of the interface layer
drastically changes, it particular the sign of the screening carriers is
determined by the polarization direction. Obtained analytical solutions could
be extended to analyze polarization-mediated electronic transport.Comment: 35 pages, 12 figures, 1 table, 2 appendices, to be submitted to Phys.
Rev.
Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms
Electrochemical insertion-deintercalation reactions are typically associated
with significant change of molar volume of the host compound. This strong
coupling between ionic currents and strains underpins image formation
mechanisms in electrochemical strain microscopy (ESM), and allows exploring the
tip-induced electrochemical processes locally. Here we analyze the signal
formation mechanism in ESM, and develop the analytical description of operation
in frequency and time domains. The ESM spectroscopic modes are compared to
classical electrochemical methods including potentiostatic and galvanostatic
intermittent titration (PITT and GITT), and electrochemical impedance
spectroscopy (EIS). This analysis illustrates the feasibility of spatially
resolved studies of Li-ion dynamics on the sub-10 nanometer level using
electromechanical detection.Comment: 49 pages, 17 figures, 4 tables, 3 appendices, to be submitted to J.
Appl. Phys
The Electromagnetic Background Environment for the Interaction-point Beam Feedback System at the ILC
- …
