23 research outputs found

    High Electron Mobility in Vacuum and Ambient for PDIF-CN2 Single-Crystal Transistors

    Full text link
    We have investigated the electron mobility on field-effect transistors based on PDIF-CN2_{2} single crystals. The family of the small molecules PDI8-CN2_{2} has been chosen for the promising results obtained for vapour-deposited thin film FETs. We used as gate dielectric a layer of PMMA (spinned on top of the SiO2_{2}), to reduce the possibility of electron trapping by hydroxyl groups present at surface of the oxide. For these devices we obtained a room temperature mobility of 6 cm2^{2}/Vs in vacuum and 3 cm2^{2}/Vs in air. Our measurements demonstrate the possibility to obtain n-type OFETs with performances comparable to those of p-type devices.Comment: published online in JAC

    Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene

    No full text
    Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzag directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. The correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene
    corecore