7 research outputs found

    Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom : comparison between IQ-SPECT and LEHR

    Get PDF
    BACKGROUND: Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF(True)). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. RESULTS: The CT verification showed that the phantom EF settings were repeatable and accurate with the EF(True) being within 1% point from the manufacture’s nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom’s volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. CONCLUSIONS: The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.Peer reviewe

    Dosimetric Comparison and Evaluation of 4 Stereotactic Body Radiotherapy Techniques for the Treatment of Prostate Cancer

    Get PDF
    Purpose:The aim of this study was to compare dosimetric characteristics, monitor unit, and delivery efficiency of 4 different stereotactic body radiotherapy techniques for the treatment of prostate cancer.Methods:This study included 8 patients with localized prostate cancer. Dosimetric assets of 4 delivery techniques for stereotactic body radiotherapy were evaluated: robotic CyberKnife, noncoplanar intensity-modulated radiotherapy, and 2 intensity-modulated arc therapy techniques (RapidArc and Elekta volumetric-modulated arc therapy). All the plans had equal treatment margins and a prescription dose of 35 Gy in 5 fractions.Results:Statistically significant differences were observed in homogeneity index and mean doses of bladder wall and penile bulb, all of which were highest with CyberKnife. No significant differences were observed in the mean doses of rectum, with values of 15.2 2.6, 13.3 +/- 2.6, 13.1 +/- 2.8, and 13.8 +/- 1.6 Gy with CyberKnife, RapidArc, volumetric-modulated arc therapy, and noncoplanar intensity-modulated radiotherapy, respectively. The highest dose conformity was realized with RapidArc. The dose coverage of the planning target volume was lowest with noncoplanar intensity-modulated radiotherapy. Treatment times and number of monitor units were largest with CyberKnife (on average 34.0 +/- 5.0 minutes and 8704 +/- 1449 monitor units) and least with intensity-modulated arc therapy techniques (on average 5.1 +/- 1.1 minutes and 2270 +/- 497 monitor units).Conclusion:Compared to CyberKnife, the RapidArc, volumetric-modulated arc therapy, and noncoplanar intensity-modulated radiotherapy produced treatment plans with similar dosimetric quality, with RapidArc achieving the highest dose conformity. Overall, the dosimetric differences between the studied techniques were marginal, and thus, the choice of the technique should rather focus on the delivery accuracies and dose delivery times.Peer reviewe

    Dosimetric Comparison and Evaluation of 4 Stereotactic Body Radiotherapy Techniques for the Treatment of Prostate Cancer

    Get PDF
    Purpose: The aim of this study was to compare dosimetric characteristics, monitor unit, and delivery efficiency of 4 different stereotactic body radiotherapy techniques for the treatment of prostate cancer. Methods: This study included 8 patients with localized prostate cancer. Dosimetric assets of 4 delivery techniques for stereotactic body radiotherapy were evaluated: robotic CyberKnife, noncoplanar intensity-modulated radiotherapy, and 2 intensity-modulated arc therapy techniques (RapidArc and Elekta volumetric-modulated arc therapy). All the plans had equal treatment margins and a prescription dose of 35 Gy in 5 fractions. Results: Statistically significant differences were observed in homogeneity index and mean doses of bladder wall and penile bulb, all of which were highest with CyberKnife. No significant differences were observed in the mean doses of rectum, with values of 15.2+ 2.6, 13.3 +2.6, 13.1 +2.8, and 13.8 +1.6 Gy with CyberKnife, RapidArc, volumetric-modulated arc therapy, and noncoplanar intensity-modulated radiotherapy, respectively. The highest dose conformity was realized with RapidArc. The dose coverage of the planning target volume was lowest with noncoplanar intensity-modulated radiotherapy. Treatment times and number of monitor units were largest with CyberKnife (on average 34.0 + 5.0 minutes and 8704 + 1449 monitor units) and least with intensity-modulated arc therapy techniques (on average 5.1 + 1.1 minutes and 2270 + 497 monitor units).Conclusion: Compared to CyberKnife, the RapidArc, volumetric-modulated arc therapy, and noncoplanar intensity-modulated radiotherapy produced treatment plans with similar dosimetric quality, with RapidArc achieving the highest dose conformity. Overall, the dosimetric differences between the studied techniques were marginal, and thus, the choice of the technique should rather focus on the delivery accuracies and dose delivery times.</p

    Effects of ultrasound frequency, temporal sampling frequency, and spatial sampling step on the quantitative ultrasound parameters of articular cartilage

    No full text
    Quantitative ultrasound imaging may provide a technique for diagnosing initial signs of osteoarthritis (OA), such as surface fibrillation of articular cartilage. Because subchondral sclerosis and osteophyte formation occur in OA as well, ultrasonic analysis of subchondral bone could yield useful diagnostic information. In this study, we investigated whether low-frequency (5 MHz) ultrasound, typically used in bone diagnostics, would be feasible for evaluating the integrity of the surface of the cartilage. The reflection parameters in the time and frequency domains, the ultrasound roughness index, and the wavelet-based parameters were evaluated using ultrasound transducers operating at 5, 10, and 50 MHz frequencies. The effects of variable size of spatial sampling steps and of temporal sampling frequencies were also investigated. Custom-made phantoms and cartilage samples with various surface characteristics were analyzed. The reflection parameters detected the surface degradation with all ultrasound frequencies. The roughness of the surface could only be evaluated reliably with the 50 MHz-focused transducer. In conclusion, simultaneous analysis of the reflection parameters of the cartilage and the subchondral bone is feasible at low (5 MHz) ultrasound frequencies. However, reliable evaluation of the microtopography of the cartilage requires use of a higher ultrasound frequency

    2-D finite difference time domain model of ultrasound reflection from normal and osteoarthritic human articular cartilage surface

    No full text
    Quantitative high-frequency ultrasonic evaluation of articular cartilage has shown a potential for the diagnosis of osteoarthritis, where the roughness of the surface, collagen and proteoglycan contents, and the density and mechanical properties of cartilage change concurrently. Experimentally, these factors are difficult to investigate individually and thus a numerical model is needed. The present study is the first one to use finite difference time domain modeling of pulse-echo measurements of articular cartilage. Ultrasound reflection from the surface was investigated with varying surface roughness, material parameters (Young's modulus, density, longitudinal, and transversal velocities) and inclination of the samples. The 2-D simulation results were compared with the results from experimental measurements of the same samples in an identical geometry. Both the roughness and the material parameters contributed significantly to the ultrasound reflection. The angular dependence of the ultrasound reflection was strong for a smooth cartilage surface but disappeared for the samples with a rougher surface. These results support the findings of previous experimental studies and indicate that ultrasound detects changes in the cartilage that are characteristic of osteoarthritis. In the present study there are differences between the results of the simulations and the experimental measurements. However, the systematic patterns in the experimental behavior are correctly reproduced by the model. In the future, our goal is to develop more realistic acoustic models incorporating inhomogeneity and anisotropy of the cartilage

    Arthroscopic ultrasound assessment of articular cartilage in the human knee joint: a potential diagnostic method

    No full text
    Objective: We tested whether an intra-articular ultrasound (IAUS) method could be used to evaluate cartilage status arthroscopically in human knee joints in vivo. Design: Seven patients undergoing arthroscopic surgery of the knee were enrolled in this study. An ultrasonic examination was conducted using the same portals as in the arthroscopic surgery. A high-frequency (40-MHz) ultrasound transducer (diameter = 1 mm) was directed to the desired location on the articular surface under arthroscopic control. In addition to ultrasound data, an IAUS video and optical video through the arthroscope were recorded. Classification of cartilage injuries according to International Cartilage Repair Society, as conducted by the orthopedic surgeon, provided reference data for comparison with the IAUS. Results: The IAUS method was successful in imaging different characteristics of the articular surfaces (e.g., intact surface, surface fibrillation, and lesions of varying depth). In some cases, also the subchondral bone and abnormal internal cartilage structure were visible in the IAUS images. Specifically, using the IAUS, a local cartilage lesion of 1 patient was found to be deeper than estimated arthroscopically. Conclusions: The IAUS method provided a novel arthroscopic method for quantitative imaging of articular cartilage lesions. The IAUS provided quantitative information about the cartilage integrity and thickness, which are not available in conventional arthroscopy. The present equipment is already approved by the Food and Drug Administration for intravascular use and might be transferred to intra-articular use. The invasiveness of the IAUS method might restrict its wider clinical use but combined with arthroscopy, ultrasonic assessment may enlarge the diagnostic potential of arthroscopic surgery
    corecore