7 research outputs found
Sobiva omaduste profiiliga ühendite tuvastamine keemiliste struktuuride andmekogudest
Keemiliste ühendite digitaalsete andmebaaside kasutuselevõtuga kaasneb vajadus leida neist arvutuslikke vahendeid kasutades sobivate omadustega molekule. Probleem on eriti huvipakkuv ravimitööstuses, kus aja- ja ressursimahukate katsete asendamine arvutustega, võimaldab märkimisväärset säästu. Kuigi tänapäevaste arvutusmeetodite piiratud võimsuse tõttu ei ole lähemas tulevikus võimalik kogu ravimidisaini protsessi algusest lõpuni arvutitesse ümber kolida, on lugu teine, kui vaadelda suuri andmekogusid. Arvutusmeetod, mis töötab teadaoleva statistilise vea piires, visates välja mõne sobiva ühendi ja lugedes mõni ekslikult aktiivseks, tihendab lõppkokkuvõttes andmekomplekti tuntaval määral huvitavate ühendite suhtes. Seetõttu on ravimiarenduse lihtsamate ja vähenõudlikkumade etappide puhul, nagu juhtühendite või ravimikandidaatide leidmine, edukalt võimalik rakendada arvutuslikke vahendeid.
Selline tegevus on tuntud virtuaalsõelumisena ning käesolevasse töösse on sellest avarast ja kiiresti arenevast valdkonnast valitud mõningad suunad, ning uuritud nende võimekust ja tulemuslikkust erinevate projektide raames. Töö tulemusena on valminud arvutusmudelid teatud tüüpi ühendite HIV proteaasi vastase aktiivsuse ja tsütotoksilisuse hindamiseks; koostatud uus sõelumismeetod; leitud potentsiaalsed ligandid HIV proteaasile ja pöördtranskriptaasile; ning kokku pandud farmakokineetiliste filtritega eeltöödeldud andmekomplekt – mugav lähtepositsioon edasisteks töödeks.With the implementation of digital chemical compound libraries, creates the need for finding compounds from them that fit the desired profile. The problem is of particular interest in drug design, where replacing the resource-intensive experiments with computational methods, would result in significant savings in time and cost. Although due to the limitations of current computational methods, it is not possible in foreseeable future to transfer all of the drug development process into computers, it is a different story with large molecular databases. An in silico method, working within a known error margin, is still capable of significantly concentrating the data set in terms of attractive compounds. That allows the use of computational methods in less stringent steps of drug development, such as finding lead compounds or drug candidates.
This approach is known as virtual screening, and today it is a vast and prospective research area comprising of several paradigms and numerous individual methods. The present thesis takes a closer look on some of them, and evaluates their performance in the course of several projects. The results of the thesis include computational models to estimate the HIV protease inhibition activity and cytotoxicity of certain type of compounds; a few prospective ligands for HIV protease and reverse transcriptase; pre-filtered dataset of compounds – convenient starting point for subsequent projects; and finally a new virtual screening method was developed
Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate
Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the LOQ (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarizing the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability, BLQ data could be released and utilized appropriately for pharmacokinetic research
Modelling of HIV-1 protease inhibitors
HIV-1 proteaasi inhibiitoritest koosnevat andmekomplekti analüüsiti kvantitatiivsete struktuuromadus
sõltuvuste (QSAR) meetodiga. Kasutatud struktuurid põhinesid kuue- ja seitsmelülilisel
tsüklilisel uureal, mis jagati treening- ja testkomplekti vahel. Modelleerimiseks kasutati teoreetilisi
molekulaardeskriptoreid ja multilineaarse regressiooni (MLR) tehnikat. Saadud mudel oli heade
statistiliste näitajatega ning suutis ennustada testkomplekti ühendite aktiivsusi samaväärse kvaliteediga
nagu treeningkomplekti ühendite aktiivsusi. Molekuli suurust, kuju ja laengujaotust kirjeldavad
deskriptorid leiti olevat inhibeerimisomaduste kirjeldamisel suurima tähtsusega. Senisest suurema ja
mitmekesisema andmekomplekti kasutamine tõstis esile ka mittelineaarseid seoseid deskriptorite ja
aktiivsuse vahel
Combined Approach Using Ligand Efficiency, Cross-Docking, and Antitarget Hits for Wild-Type and Drug-Resistant Y181C HIV-1 Reverse Transcriptase
New hits against HIV-1 wild-type and Y181C drug-resistant reverse transcriptases were predicted taking into account the possibility of some of the known metabolism interactions. In silico hits against a set of antitargets (i.e., proteins or nucleic acids that are off-targets from the desired pharmaceutical target objective) are used to predict a simple, visual measure of possible interactions for the ligands, which helps to introduce early safety considerations into the design of compounds before lead optimization. This combined approach consists of consensus docking and scoring: cross-docking to a group of wild-type and drug-resistant mutant proteins, ligand efficiency (also called binding efficiency) indices as new ranking measures, pre- and postdocking filters, a set of antitargets and estimation, and minimization of atomic clashes. Diverse, small-molecule compounds with new chemistry (such as a triazine core with aromatic side chains) as well as known drugs for different applications (oxazepam, chlorthalidone) were highly ranked to the targets having binding interactions and functional group spatial arrangements similar to those of known inhibitors, while being moderate to low binders to the antitargets. The results are discussed on the basis of their relevance to medicinal and computational chemistry. Optimization of ligands to targets and off-targets or antitargets is foreseen to be critical for compounds directed at several simultaneous sites
Sponge SprayReaching New Dimensions of Direct Sampling and Analysis by MS
Sample preparation
for the analysis of clinical samples with the
mass spectrometer (MS) can be extensive and expensive. Simplifying
and speeding up the process would be very beneficial. This paper reports
sponge spraya novel sampling and direct MS analysis approachattempting
exactly that. It enables direct analysis without any sample preparation
from dried blood, plasma, and urine. The tip of a volumetric absorptive
microsampling device is used to collect an exact amount of sample
and from that same tip an electrospray can be directed into a mass
spectrometer. We demonstrate here that, although with significant
matrix effects, quantitation of penicillin G, a common antimicrobial,
is possible in plasma and in urine, with essentially no sample preparation