519 research outputs found

    Controlling the transport of an ion: Classical and quantum mechanical solutions

    Full text link
    We investigate the performance of different control techniques for ion transport in state-of-the-art segmented miniaturized ion traps. We employ numerical optimization of classical trajectories and quantum wavepacket propagation as well as analytical solutions derived from invariant based inverse engineering and geometric optimal control. We find that accurate shuttling can be performed with operation times below the trap oscillation period. The maximum speed is limited by the maximum acceleration that can be exerted on the ion. When using controls obtained from classical dynamics for wavepacket propagation, wavepacket squeezing is the only quantum effect that comes into play for a large range of trapping parameters. We show that this can be corrected by a compensating force derived from invariant based inverse engineering, without a significant increase in the operation time

    Coupling a single atomic quantum bit to a high finesse optical cavity

    Get PDF
    The quadrupole S1/2_{1/2} -- D5/2_{5/2} optical transition of a single trapped Ca+^+ ion, well suited for encoding a quantum bit of information, is coherently coupled to the standing wave field of a high finesse cavity. The coupling is verified by observing the ion's response to both spatial and temporal variations of the intracavity field. We also achieve deterministic coupling of the cavity mode to the ion's vibrational state by selectively exciting vibrational state-changing transitions and by controlling the position of the ion in the standing wave field with nanometer-precision

    Cold Trapped Ions as Quantum Information Processors

    Full text link
    In this tutorial we review physical implementation of quantum computing using a system of cold trapped ions. We discuss systematically all the aspects for making the implementation possible. Firstly, we go through the loading and confining of atomic ions in the linear Paul trap, then we describe the collective vibrational motion of trapped ions. Further, we discuss interactions of the ions with a laser beam. We treat the interactions in the travelling-wave and standing-wave configuration for dipole and quadrupole transitions. We review different types of laser cooling techniques associated with trapped ions. We address Doppler cooling, sideband cooling in and beyond the Lamb-Dicke limit, sympathetic cooling and laser cooling using electromagnetically induced transparency. After that we discuss the problem of state detection using the electron shelving method. Then quantum gates are described. We introduce single-qubit rotations, two-qubit controlled-NOT and multi-qubit controlled-NOT gates. We also comment on more advanced multi-qubit logic gates. We describe how quantum logic networks may be used for the synthesis of arbitrary pure quantum states. Finally, we discuss the speed of quantum gates and we also give some numerical estimations for them. A discussion of dynamics on off-resonant transitions associated with a qualitative estimation of the weak coupling regime and of the Lamb-Dicke regime is included in Appendix.Comment: 44 revtex pages, 23 figures, to appear in Journal of Modern Optic

    Quantum gate in the decoherence-free subspace of trapped ion qubits

    Full text link
    We propose a geometric phase gate in a decoherence-free subspace with trapped ions. The quantum information is encoded in the Zeeman sublevels of the ground-state and two physical qubits to make up one logical qubit with ultra long coherence time. Single- and two-qubit operations together with the transport and splitting of linear ion crystals allow for a robust and decoherence-free scalable quantum processor. For the ease of the phase gate realization we employ one Raman laser field on four ions simultaneously, i.e. no tight focus for addressing. The decoherence-free subspace is left neither during gate operations nor during the transport of quantum information.Comment: 6 pages, 6 figure

    Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor

    Get PDF
    Using optical Ramsey interferometry, we precisely measure the laser-induced AC-stark shift on the S1/2S_{1/2} -- D5/2D_{5/2} "quantum bit" transition near 729 nm in a single trapped 40^{40}Ca+^+ ion. We cancel this shift using an additional laser field. This technique is of particular importance for the implementation of quantum information processing with cold trapped ions. As a simple application we measure the atomic phase evolution during a n×2πn \times 2\pi rotation of the quantum bit.Comment: 4 pages, 4 figure

    Fabrication of a planar micro Penning trap and numerical investigations of versatile ion positioning protocols

    Full text link
    We describe a versatile planar Penning trap structure, which allows to dynamically modify the trapping conguration almost arbitrarily. The trap consists of 37 hexagonal electrodes, each with a circumcirle-diameter of 300 m, fabricated in a gold-on-sapphire lithographic technique. Every hexagon can be addressed individually, thus shaping the electric potential. The fabrication of such a device with clean room methods is demonstrated. We illustrate the variability of the device by a detailed numerical simulation of a lateral and a vertical transport and we simulate trapping in racetrack and articial crystal congurations. The trap may be used for ions or electrons, as a versatile container for quantum optics and quantum information experiments.Comment: 10 pages, 7 figures, pdflatex, to be published in New Journal of Physics (NJP) various changes according to the wishes of the NJP referees. Text added and moved around, title changed, abstract changed, references added rev3: one reference had a typo (ref 15), fixed (phys rev a 72, not 71

    Decoherence and robustness of parity-dependent entanglement in the dynamics of a trapped ion

    Get PDF
    We study the entanglement between the 2D vibrational motion and two ground state hyperfine levels of a trapped ion, Under particular conditions this entanglement depends on the parity of the total initial vibrational quanta. We study the robustness of this quantum coherence effect with respect to the presence of non-dissipative sources of decoherence, and of an imperfect initial state preparation.Comment: 13 pages, 5 figure

    Speed of ion trap quantum information processors

    Get PDF
    We investigate theoretically the speed limit of quantum gate operations for ion trap quantum information processors. The proposed methods use laser pulses for quantum gates which entangle the electronic and vibrational degrees of freedom of the trapped ions. Two of these methods are studied in detail and for both of them the speed is limited by a combination of the recoil frequency of the relevant electronic transition, and the vibrational frequency in the trap. We have experimentally studied the gate operations below and above this speed limit. In the latter case, the fidelity is reduced, in agreement with our theoretical findings. // Changes: a) error in equ. 24 and table III repaired b) reference Jonathan et al, quant-ph/ 0002092, added (proposes fast quantum gates using the AC-Stark effect)Comment: 10 pages, 4 figure

    NGC 346 in the Small Magellanic Cloud. III. Recent Star Formation and Stellar Clustering Properties in the Bright HII Region N 66

    Full text link
    In the third part of our photometric study of the star-forming region NGC 346/N~66 and its surrounding field in the Small Magellanic Cloud (SMC), we focus on the large number of low-mass pre-main sequence (PMS) stars revealed by the Hubble Space Telescope Observations with the Advanced Camera for Surveys. We investigate the origin of the observed broadening of the pre-main sequence population in the VIV-I, VV CMD. The most likely explanations are either the presence of differential reddening or an age spread among the young stars. Assuming the latter, simulations indicate that we cannot exclude the possibility that stars in NGC 346 might have formed in two distinct events occurring about 10 and 5 Myr ago, respectively. We find that the PMS stars are not homogeneously distributed across NGC 346, but instead are grouped in at least five different clusters. On spatial scales from 0.8'' to 8'' (0.24 to 2.4 pc at the distance of the SMC) the clustering of the PMS stars as computed by a two-point angular correlation function is self-similar with a power law slope γ0.3\gamma \approx -0.3. The clustering properties are quite similar to Milky Way star forming regions like Orion OB or ρ\rho Oph. Thus molecular cloud fragmentation in the SMC seems to proceed on the same spatial scales as in the Milky Way. This is remarkable given the differences in metallicity and hence dust content between SMC and Milky Way star forming regions.Comment: Accepted for publication in ApJ. 16 pages, 13 (low-resolution) figures, emulateapj.cls LaTeX styl
    corecore