We investigate the performance of different control techniques for ion
transport in state-of-the-art segmented miniaturized ion traps. We employ
numerical optimization of classical trajectories and quantum wavepacket
propagation as well as analytical solutions derived from invariant based
inverse engineering and geometric optimal control. We find that accurate
shuttling can be performed with operation times below the trap oscillation
period. The maximum speed is limited by the maximum acceleration that can be
exerted on the ion. When using controls obtained from classical dynamics for
wavepacket propagation, wavepacket squeezing is the only quantum effect that
comes into play for a large range of trapping parameters. We show that this can
be corrected by a compensating force derived from invariant based inverse
engineering, without a significant increase in the operation time