20 research outputs found

    Pumpless Extracorporeal Hemadsorption Technique (pEHAT) : A Proof-of-Concept Animal Study

    Get PDF
    Background: Extracorporeal hemadsorption eliminates proinflammatory mediators in critically ill patients with hyperinflammation. The use of a pumpless extracorporeal hemadsorption technique allows its early usage prior to organ failure and the need for an additional medical device. In our animal model, we investigated the feasibility of pumpless extracorporeal hemadsorption over a wide range of mean arterial pressures (MAP). Methods: An arteriovenous shunt between the femoral artery and femoral vein was established in eight pigs. The hemadsorption devices were inserted into the shunt circulation; four pigs received CytoSorb® and four Oxiris® hemadsorbers. Extracorporeal blood flow was measured in a range between mean arterial pressures of 45–85 mmHg. Mean arterial pressures were preset using intravenous infusions of noradrenaline, urapidil, or increased sedatives. Results: Extracorporeal blood flows remained well above the minimum flows recommended by the manufacturers throughout all MAP steps for both devices. Linear regression resulted in CytoSorb® blood flow [mL/min] = 4.226 × MAP [mmHg] − 3.496 (R-square 0.8133) and Oxiris® blood flow [mL/min] = 3.267 × MAP [mmHg] + 57.63 (R-square 0.8708), respectively. Conclusion: Arteriovenous pumpless extracorporeal hemadsorption resulted in sufficient blood flows through both the CytoSorb® and Oxiris® devices over a wide range of mean arterial blood pressures and is likely an intriguing therapeutic option in the early phase of septic shock or hyperinflammatory syndromes

    Hydrocortisone therapy for patients with septic shock

    Get PDF
    Background Hydrocortisone is widely used in patients with septic shock even though a survival benefit has been reported only in patients who remained hypotensive after fluid and vasopressor resuscitation and whose plasma cortisol levels did not rise appropriately after the administration of corticotropin. Methods In this multicenter, randomized, double-blind, placebo-controlled trial, we assigned 251 patients to receive 50 mg of intravenous hydrocortisone and 248 patients to receive placebo every 6 hours for 5 days; the dose was then tapered during a 6-day period. At 28 days, the primary outcome was death among patients who did not have a response to a corticotropin test. Results Of the 499 patients in the study, 233 (46.7%) did not have a response to corticotropin (125 in the hydrocortisone group and 108 in the placebo group). At 28 days, there was no significant difference in mortality between patients in the two study groups who did not have a response to corticotropin (39.2% in the hydrocortisone group and 36.1% in the placebo group, P=0.69) or between those who had a response to corticotropin (28.8% in the hydrocortisone group and 28.7% in the placebo group, P=1.00). At 28 days, 86 of 251 patients in the hydrocortisone group (34.3%) and 78 of 248 patients in the placebo group (31.5%) had died (P=0.51). In the hydrocortisone group, shock was reversed more quickly than in the placebo group. However, there were more episodes of superinfection, including new sepsis and septic shock. Conclusions Hydrocortisone did not improve survival or reversal of shock in patients with septic shock, either overall or in patients who did not have a response to corticotropin, although hydrocortisone hastened reversal of shock in patients in whom shock was reversed. (ClinicalTrials.gov number, NCT00147004 [ClinicalTrials.gov] .)Peer reviewedPublisher PD

    High resolution propagation-based lung imaging at clinically relevant X-ray dose levels

    Get PDF
    Absorption-based clinical computed tomography (CT) is the current imaging method of choice in the diagnosis of lung diseases. Many pulmonary diseases are affecting microscopic structures of the lung, such as terminal bronchi, alveolar spaces, sublobular blood vessels or the pulmonary interstitial tissue. As spatial resolution in CT is limited by the clinically acceptable applied X-ray dose, a comprehensive diagnosis of conditions such as interstitial lung disease, idiopathic pulmonary fibrosis or the characterization of small pulmonary nodules is limited and may require additional validation by invasive lung biopsies. Propagation-based imaging (PBI) is a phase sensitive X-ray imaging technique capable of reaching high spatial resolutions at relatively low applied radiation dose levels. In this publication, we present technical refinements of PBI for the characterization of different artificial lung pathologies, mimicking clinically relevant patterns in ventilated fresh porcine lungs in a human-scale chest phantom. The combination of a very large propagation distance of 10.7 m and a photon counting detector with [Formula: see text] pixel size enabled high resolution PBI CT with significantly improved dose efficiency, measured by thermoluminescence detectors. Image quality was directly compared with state-of-the-art clinical CT. PBI with increased propagation distance was found to provide improved image quality at the same or even lower X-ray dose levels than clinical CT. By combining PBI with iodine k-edge subtraction imaging we further demonstrate that, the high quality of the calculated iodine concentration maps might be a potential tool for the analysis of lung perfusion in great detail. Our results indicate PBI to be of great value for accurate diagnosis of lung disease in patients as it allows to depict pathological lesions non-invasively at high resolution in 3D. This will especially benefit patients at high risk of complications from invasive lung biopsies such as in the setting of suspected idiopathic pulmonary fibrosis (IPF)

    Extracorporeal life support in COVID-19-related acute respiratory distress syndrome: A EuroELSO international survey

    Get PDF
    Extracorporeal life support (ECLS) is a means to support patients with acute respiratory failure. Initially, recommendations to treat severe cases of pandemic coronavirus disease 2019 (COVID-19) with ECLS have been restrained. In the meantime, ECLS has been shown to produce similar outcomes in patients with severe COVID-19 compared to existing data on ARDS mortality. We performed an international email survey to assess how ECLS providers worldwide have previously used ECLS during the treatment of critically ill patients with COVID-19. A questionnaire with 45 questions (covering, e.g., indication, technical aspects, benefit, and reasons for treatment discontinuation), mostly multiple choice, was distributed by email to ECLS centers. The survey was approved by the European branch of the Extracorporeal Life Support Organization (ELSO); 276 ECMO professionals from 98 centers in 30 different countries on four continents reported that they employed ECMO for very severe COVID-19 cases, mostly in veno-venous configuration (87%). The most common reason to establish ECLS was isolated hypoxemic respiratory failure (50%), followed by a combination of hypoxemia and hypercapnia (39%). Only a small fraction of patients required veno-arterial cannulation due to heart failure (3%). Time on ECLS varied between less than 2 and more than 4 weeks. The main reason to discontinue ECLS treatment prior to patient’s recovery was lack of clinical improvement (53%), followed by major bleeding, mostly intracranially (13%). Only 4% of respondents reported that triage situations, lack of staff or lack of oxygenators, were responsible for discontinuation of ECLS support. Most ECLS physicians (51%, IQR 30%) agreed that patients with COVID-19-induced ARDS (CARDS) benefitted from ECLS. Overall mortality of COVID-19 patients on ECLS was estimated to be about 55%. ECLS has been utilized successfully during the COVID-19 pandemic to stabilize CARDS patients in hypoxemic or hypercapnic lung failure. Age and multimorbidity limited the use of ECLS. Triage situations were rarely a concern. ECLS providers stated that patients with severe COVID-19 benefitted from ECLS

    Response of rat lung tissue to short-term hyperoxia: a proteomic approach

    No full text
    An inspiratory oxygen fraction of 1.0 is often required to avoid hypoxia both in many pre- and in-hospital situations. On the other hand, hyperoxia may lead to deleterious consequences (cell growth inhibition, inflammation, and apoptosis) for numerous tissues including the lung. Whereas clinical effects of hyperoxic lung injury are well known, its impact on the expression of lung proteins has not yet been evaluated sufficiently. The aim of this study was to analyze time-dependent alterations of protein expression in rat lung tissue after short-term normobaric hyperoxia (NH). After approval of the local ethics committee for animal research, N = 36 Wistar rats were randomized into six different groups: three groups with NH with exposure to 100 % oxygen for 3 h and three groups with normobaric normoxia (NN) with exposure to room air (21 % oxygen). After the end of the experiments, lungs were removed immediately (NH0 and NN0), after 3 days (NH3 and NN3) and after 7 days (NH7 and NN7). Lung lysates were analyzed by two-dimensional gel electrophoresis (2D-GE) followed by peptide mass fingerprinting using mass spectrometry. Statistical analysis was performed with Delta 2D (DECODON GmbH, Greifswald, Germany; ANOVA, Bonferroni correction, p < 0.01). Biological functions of differential regulated proteins were studied using functional network analysis (Ingenuity Pathways Analysis, IPA). pO(2) was significantly higher in NH-groups compared to NN-groups (581 +/- A 28 vs. 98 +/- A 12 mmHg; p < 0.01), all other physiological parameters did not differ. Expression of 14 proteins were significantly altered: two proteins were up-regulated and 12 proteins were down-regulated. Even though NH was comparatively short termed, significant alterations in lung protein expression could be demonstrated up to 7 days after hyperoxia. The identified proteins indicate an association with cell growth inhibition, regulation of apoptosis, and approval of structural cell integrity

    Prospective Observational Study to Evaluate the Effect of Different Levels of Positive End-Expiratory Pressure on Lung Mechanics in Patients with and without Acute Respiratory Distress Syndrome

    No full text
    Background: The optimal level of positive end-expiratory pressure is still under debate. There are scare data examining the association of PEEP with transpulmonary pressure (TPP), end-expiratory lung volume (EELV) and intraabdominal pressure in ventilated patients with and without ARDS. Methods: We analyzed lung mechanics in 3 patient groups: group A, patients with ARDS; group B, obese patients (body mass index (BMI) &gt; 30 kg/m2) and group C, a control group. Three levels of PEEP (5, 10, 15 cm H2O) were used to investigate the consequences for lung mechanics. Results: Fifty patients were included, 22 in group A, 18 in group B (BMI 38 &plusmn; 2 kg/m2) and 10 in group C. At baseline, oxygenation showed no differences between the groups. Driving pressure (&Delta;P) and transpulmonary pressure (&Delta;PL) was higher in group B than in groups A and C at a PEEP of 5 cm H2O (&Delta;P A: 15 &plusmn; 1, B: 18 &plusmn; 1, C: 14 &plusmn; 1 cm H2O; &Delta;PL A: 10 &plusmn; 1, B: 13 &plusmn; 1, C: 9 &plusmn; 0 cm H2O). Peak inspiratory pressure (Pinsp) rose in all groups as PEEP increased, but the resulting driving pressure and transpulmonary pressure were reduced, whereas EELV increased. Conclusion: Measuring EELV or TPP allows a personalized approach to lung-protective ventilation

    Evaluation of Different Positive End-Expiratory Pressures Using Supreme™ Airway Laryngeal Mask during Minor Surgical Procedures in Children

    No full text
    Background and objectives: The laryngeal mask is the method of choice for airway management in children during minor surgical procedures. There is a paucity of data regarding optimal management of mechanical ventilation in these patients. The Supreme&trade; airway laryngeal mask offers the option to insert a gastric tube to empty the stomach contents of air and/or gastric juice. The aim of this investigation was to evaluate the impact of positive end-expiratory positive pressure (PEEP) levels on ventilation parameters and gastric air insufflation during general anesthesia in children using pressure-controlled ventilation with laryngeal mask. Materials and Methods: An observational trial was carried out in 67 children aged between 1 and 11 years. PEEP levels of 0, 3 and 5 mbar were tested for 5 min in each patient during surgery and compared with ventilation parameters (dynamic compliance (mL/cmH2O), etCO2 (mmHg), peak pressure (mbar), tidal volume (mL), respiratory rate (per minute), FiO2 and gastric air (mL)) were measured at each PEEP. Air was aspirated from the stomach at the start of the sequence of measurements and at the end. Results: Significant differences were observed for the ventilation parameters: dynamic compliance (PEEP 5 vs. PEEP 3: p &lt; 0.0001, PEEP 5 vs. PEEP 0: p &lt; 0.0001, PEEP 3 vs. PEEP 0: p &lt; 0.0001), peak pressure (PEEP 5 vs. PEEP 3: p &lt; 0.0001, PEEP 5 vs. PEEP 0: p &lt; 0.0001, PEEP 3 vs. PEEP 0: p &lt; 0.0001) and tidal volume (PEEP 5 vs. PEEP 3: p = 0.0048, PEEP 5 vs. PEEP 0: p &lt; 0.0001, PEEP 3 vs. PEEP 0: p &lt; 0.0001). All parameters increased significantly with higher PEEP, with the exception of etCO2 (significant decrease) and respiratory rate (no significant difference). We also showed different values for air quantity in the comparisons between the different PEEP levels (PEEP 5: 2.8 &plusmn; 3.9 mL, PEEP 3: 1.8 &plusmn; 3.0 mL; PEEP 0: 1.6 &plusmn; 2.3 mL) with significant differences between PEEP 5 and PEEP 3 (p = 0.0269) and PEEP 5 and PEEP 0 (p = 0.0209). Conclusions: Our data suggest that ventilation with a PEEP of 5 mbar might be more lung protective in children using the Supreme&trade; airway laryngeal mask, although gastric air insufflation increased with higher PEEP. We recommend the use of a laryngeal mask with the option of inserting a gastric tube to evacuate potential gastric air

    Effect of moderate elevated intra-abdominal pressure on lung mechanics and histological lung injury at different positive end-expiratory pressures.

    No full text
    INTRODUCTION:Intra-abdominal hypertension (IAH) is a well-known phenomenon in critically ill patients. Effects of a moderately elevated intra-abdominal pressure (IAP) on lung mechanics are still not fully analyzed. Moreover, the optimal positive end-expiratory pressure (PEEP) in elevated IAP is unclear. METHODS:We investigated changes in lung mechanics and transformation in histological lung patterns using three different PEEP levels in eighteen deeply anesthetized pigs with an IAP of 10 mmHg. After establishing the intra-abdominal pressure, we randomized the animals into 3 groups. Each of n = 6 (Group A = PEEP 5, B = PEEP 10 and C = PEEP 15 cmH2O). End-expiratory lung volume (EELV/kg body weight (bw)), pulmonary compliance (Cstat), driving pressure (ΔP) and transpulmonary pressure (ΔPL) were measured for 6 hours. Additionally, the histological lung injury score was calculated. RESULTS:Comparing hours 0 and 6 in group A, there was a decrease of EELV/kg (27±2 vs. 16±1 ml/kg; p<0.05) and of Cstat (42±2 vs. 27±1 ml/cmH2O; p<0.05) and an increase of ΔP (11±0 vs. 17±1 cmH2O; p<0.05) and ΔPL (6±0 vs. 10±1 cmH2O; p<0.05). In group B, there was no significant change in EELV/kg (27±3 vs. 24±3 ml/kg), but a decrease in Cstat (42±3 vs. 32±1 ml/cmH20; p<0.05) and an increase in ΔP (11±1 vs. 15±1 cmH2O; p<0.05) and ΔPL (5±1 vs. 7±0 cmH2O; p<0.05). In group C, there were no significant changes in EELV/kg (27±2 vs. 29±3 ml/kg), ΔP (10±1 vs. 12±1 cmH2O) and ΔPL (5±1 vs. 7±1 cmH2O), but a significant decrease of Cstat (43±1 vs. 37±1 ml/cmH2O; p<0.05). Histological lung injury score was lowest in group B. CONCLUSIONS:A moderate elevated IAP of 10 mmHg leads to relevant changes in lung mechanics during mechanical ventilation. In our study, a PEEP of 10 cmH2O was associated with a lower lung injury score and was able to overcome the IAP induced alterations of EELV
    corecore