13 research outputs found

    NAD(P)H Drives the Ascorbate–Glutathione Cycle and Abundance of Catalase in Developing Beech Seeds Differently in Embryonic Axes and Cotyledons

    No full text
    European beech is an important component of European lowland forests in terms of ecology, and produces irregular seeds categorized as intermediate due to their limited longevity. Removal of the excess of reactive oxygen species is crucial for redox homeostasis in growing plant tissues. Hydrogen peroxide (H2O2) is detoxified via the plant-specific ascorbate-glutathione cycle, and enzymatically, mainly by catalase (CAT). The reduced and oxidized (redox) forms of ascorbate (AsA, DHA) and glutathione (GSH, GSSG) decreased during maturation as the content of redox forms of nicotinamide adenine dinucleotide (NADH, NAD+) phosphate (NADPH, NADP+), cofactors of ascorbate–glutathione enzymes, declined and limited this cycle. The degree of oxidation of glutathione peaked at approximately 80%, at the exact time when the NADP content was the lowest and the NADPH/NADP+ ratio reached the highest values. The glutathione pool was reflected in changes in the NADP pool, both in embryonic axes (R2 = 0.61) and in cotyledons (R2 = 0.98). A large excess of NADPH was reported in embryonic axes, whereas cotyledons displayed more unified levels of NADP redox forms. As a result, anabolic redox charge and reducing power were higher in embryonic axes. CAT was recognized as two proteins, and the abundance of the 55 kDa protein was correlated with all redox forms of ascorbate, glutathione, NAD, and NADP, whereas the 37 kDa protein was oppositely regulated in embryonic axes and cotyledons. Here, we discuss the role of NAD(P) in the regulation of the ascorbate–glutathione cycle, catalase, and seed longevity concerning a putative role of NAD(P)H as a redox biomarker involved in predefining seed quality, because NAD(P)H-derived redox homeostasis was found to be better controlled in embryonic axes than cotyledons

    NAD(P)H Drives the Ascorbate–Glutathione Cycle and Abundance of Catalase in Developing Beech Seeds Differently in Embryonic Axes and Cotyledons

    No full text
    European beech is an important component of European lowland forests in terms of ecology, and produces irregular seeds categorized as intermediate due to their limited longevity. Removal of the excess of reactive oxygen species is crucial for redox homeostasis in growing plant tissues. Hydrogen peroxide (H2O2) is detoxified via the plant-specific ascorbate-glutathione cycle, and enzymatically, mainly by catalase (CAT). The reduced and oxidized (redox) forms of ascorbate (AsA, DHA) and glutathione (GSH, GSSG) decreased during maturation as the content of redox forms of nicotinamide adenine dinucleotide (NADH, NAD+) phosphate (NADPH, NADP+), cofactors of ascorbate–glutathione enzymes, declined and limited this cycle. The degree of oxidation of glutathione peaked at approximately 80%, at the exact time when the NADP content was the lowest and the NADPH/NADP+ ratio reached the highest values. The glutathione pool was reflected in changes in the NADP pool, both in embryonic axes (R2 = 0.61) and in cotyledons (R2 = 0.98). A large excess of NADPH was reported in embryonic axes, whereas cotyledons displayed more unified levels of NADP redox forms. As a result, anabolic redox charge and reducing power were higher in embryonic axes. CAT was recognized as two proteins, and the abundance of the 55 kDa protein was correlated with all redox forms of ascorbate, glutathione, NAD, and NADP, whereas the 37 kDa protein was oppositely regulated in embryonic axes and cotyledons. Here, we discuss the role of NAD(P) in the regulation of the ascorbate–glutathione cycle, catalase, and seed longevity concerning a putative role of NAD(P)H as a redox biomarker involved in predefining seed quality, because NAD(P)H-derived redox homeostasis was found to be better controlled in embryonic axes than cotyledons

    Ascorbic Acid—The Little-Known Antioxidant in Woody Plants

    No full text
    Reactive oxygen species (ROS) are constantly produced by metabolically active plant cells. The concentration of ROS may determine their role, e.g., they may participate in signal transduction or cause oxidative damage to various cellular components. To ensure cellular homeostasis and minimize the negative effects of excess ROS, plant cells have evolved a complex antioxidant system, which includes ascorbic acid (AsA). AsA is a multifunctional metabolite with strong reducing properties that allows the neutralization of ROS and the reduction of molecules oxidized by ROS in cooperation with glutathione in the Foyer-Halliwell-Asada cycle. Antioxidant enzymes involved in AsA oxidation and reduction switches evolved uniquely in plants. Most experiments concerning the role of AsA have been performed on herbaceous plants. In addition to extending our understanding of this role in additional taxa, fundamental knowledge of the complex life cycle stages of woody plants, including their development and response to environmental factors, will enhance their breeding and amend their protection. Thus, the role of AsA in woody plants compared to that in nonwoody plants is the focus of this paper. The role of AsA in woody plants has been studied for nearly 20 years. Studies have demonstrated that AsA is important for the growth and development of woody plants. Substantial changes in AsA levels, as well as reduction and oxidation switches, have been reported in various physiological processes and transitions described mainly in leaves, fruits, buds, and seeds. Evidently, AsA exhibits a dual role in the photoprotection of the photosynthetic apparatus in woody plants, which are the most important scavengers of ozone. AsA is associated with proper seed production and, thus, woody plant reproduction. Similarly, an important function of AsA is described under drought, salinity, temperature, light stress, and biotic stress. This report emphasizes the involvement of AsA in the ecological advantages, such as nutrition recycling due to leaf senescence, of trees and shrubs compared to nonwoody plants

    Thermotherapy and Storage Temperature Manipulations Limit the Production of Reactive Oxygen Species in Stored Pedunculate Oak Acorns

    No full text
    For many species, seed storage protocols are still being improved to provide viable seeds of the highest quality. Seed storage is extremely problematic for short-lived seeds categorized as recalcitrant, including pedunculate oak (Quercus robur L.), for which the optimal seed storage protocol involves a temperature of –3 °C and 40% acorn moisture content recommendations. The sensitivity of pedunculated oak seeds to temperature manipulations under preparation for long-term storage has been poorly investigated, particularly in terms of the production of reactive oxygen species (ROS), which are assumed to be determinants of seed longevity. Thermotherapy, the pathogen elimination procedure, did not increase the level of three types of ROS: hydrogen peroxide (H2O2), superoxide anion radical and hydroxyl radical (‱OH). The temporal heat stress of thermotherapy resulted in slightly reduced levels of H2O2, indicating activation of the antioxidant systems in acorn preparation for storage. The effect of constant storage temperatures (−3, −5, −7 °C) and their combinations (−3 → −5 °C or −3 → −5 →−7 °C) on ROS levels and seed viability was investigated in three provenances. The highest ROS levels were detected in acorns stored at −7 °C, whereas three-step cold acclimation was beneficial for reducing ROS levels. Interestingly, the levels of H2O2 were not affected by temperature in thermotherapized acorns. In contrast, decreasing storage temperature caused a linear increase in ‱OH levels in all provenances. The effect of heat stress and cold stress on ROS levels in relation to long-term seed storage of pedunculate oak is discussed here in relation to the seed viability evidenced via germination rates, seedling emergence and electrolyte leakage. Thermotherapy and cold acclimation of acorns can improve their viability after storage by decreasing ROS levels

    Oxidation processes related to seed storage and seedling growth of Malus sylvestris, Prunus avium and Prunus padus.

    No full text
    Seeds stored in controlled conditions in gene banks, faster or slower lose their viability. The effects of seed moisture content levels (ca. 5, 8, 11%) combined with storage temperatures (-3°, -18°, -196°C) were investigated in terms of the description of seeds defined as orthodox under oxidative stress after seed storage, during germination, and initial seedling growth. Hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and ascorbate (Asc) were analyzed in relation to seed germinability and seedlings emergence in three species: Malus sylvestris L., Prunus avium L. and Prunus padus L. The effect of seed storage conditions on H2O2 levels appeared in germinated seeds after the third year of storage in each species. The H2O2 levels were negatively correlated with the germination and seedling emergence of P. avium seeds after three years of storage under all examined combinations. The emergence of P. padus seedlings was not linked to any of the stress markers tested. The P. padus seed biochemical traits were least altered by storage conditions, and the seeds produced tolerant seedlings of relatively high levels of H2O2 and TBARS. To cope with different H2O2 levels, TBARS levels, and Asc levels in seeds of three species varying storage conditions different molecular responses, i.e. repairing mechanisms, were applied during stratification to compensate for the storage conditions and, as a result, seeds remained viable and seedlings were successfully established

    Nicotinamide adenine dinucleotides are associated with distinct redox control of germination in Acer seeds with contrasting physiology.

    No full text
    Seed germination is a complex process enabling plant reproduction. Germination was found to be regulated at the proteome, metabolome and hormonal levels as well as via discrete post-translational modification of proteins including phosphorylation and carbonylation. Redox balance is also involved but less studied. Acer seeds displaying orthodox and recalcitrant characteristics were investigated to determine the levels of redox couples of nicotinamide adenine dinucleotide (NAD) phosphate (NADP) and integrated with the levels of ascorbate and glutathione. NAD and NADP concentrations were higher in Norway maple seeds and exceptionally high at the germinated stage, being the most contrasting parameter between germinating Acer seeds. In contrast, NAD(P)H/NAD(P)+ ratios were higher in sycamore seeds, thus exhibiting higher reducing power. Despite distinct concentrations of ascorbate and glutathione, both seed types attained in embryonic axes and cotyledons had similar ratios of reduced/oxidized forms of ascorbate and half-cell reduction potential of glutathione at the germinated stage. Both species accomplished germination displaying different strategies to modulate redox status. Sycamore produced higher amounts of ascorbate and maintained pyridine nucleotides in reduced forms. Interestingly, lower NAD(P) concentrations limited the regeneration of ascorbate and glutathione but dynamically drove metabolic reactions, particularly in this species, and contributed to faster germination. We suggest that NAD(P) is an important player in regulating redox status during germination in a distinct manner in Norway maple and sycamore seeds

    Changes in Reserve Materials Deposited in Cotyledons of Pedunculate Oak (Quercus robur L.) Seeds during 18 Months of Storage

    No full text
    Pedunculate oak (Quercus robur L.) produces desiccation-sensitive seeds, the long-term storage of which is limited. We investigated the effectiveness of using a slightly lowered storage temperature (−5 °C) in combination with slight dehydration of acorns (38% MC) for improving seed viability during 18 months of storage. To this end, we performed a factorial experiment using storage temperatures of −5 °C and −3 °C combined with 38% and 40% seed MC and subsampled the acorns at 4-month intervals over 18 months. The modified regime of −5 °C combined with 38% MC resulted in increased germination and emergence rates but only when seeds were stored for 12 months. It also restricted seed biomass loss. Starch depletion was recorded on consecutive sampling dates, showing little dependence on storage conditions. At −5 °C at both MC, it was accompanied by an accumulation of soluble carbohydrates. Fat reserves also decreased under all storage conditions, but the slowest decrease was at −5 °C and 38% MC. We conclude that storing acorns in a slightly dehydrated state (38% MC) at −5 °C produced a transient improvement in seed viability and that the observed increase in soluble carbohydrates may indicate initiation of prosurvival mechanisms, such as osmo- and cryoprotection

    Changes in Reserve Materials Deposited in Cotyledons of Pedunculate Oak (<i>Quercus robur</i> L.) Seeds during 18 Months of Storage

    No full text
    Pedunculate oak (Quercus robur L.) produces desiccation-sensitive seeds, the long-term storage of which is limited. We investigated the effectiveness of using a slightly lowered storage temperature (−5 °C) in combination with slight dehydration of acorns (38% MC) for improving seed viability during 18 months of storage. To this end, we performed a factorial experiment using storage temperatures of −5 °C and −3 °C combined with 38% and 40% seed MC and subsampled the acorns at 4-month intervals over 18 months. The modified regime of −5 °C combined with 38% MC resulted in increased germination and emergence rates but only when seeds were stored for 12 months. It also restricted seed biomass loss. Starch depletion was recorded on consecutive sampling dates, showing little dependence on storage conditions. At −5 °C at both MC, it was accompanied by an accumulation of soluble carbohydrates. Fat reserves also decreased under all storage conditions, but the slowest decrease was at −5 °C and 38% MC. We conclude that storing acorns in a slightly dehydrated state (38% MC) at −5 °C produced a transient improvement in seed viability and that the observed increase in soluble carbohydrates may indicate initiation of prosurvival mechanisms, such as osmo- and cryoprotection

    Are Methionine Sulfoxide-Containing Proteins Related to Seed Longevity? A Case Study of Arabidopsis thaliana Dry Mature Seeds Using Cyanogen Bromide Attack and Two-Dimensional-Diagonal Electrophoresis

    No full text
    International audienceIn recent years, several reports pointed out the role of protein oxidation in seed longevity, notably regarding the oxidation of methionine (Met) residues to methionine sulfoxide (MetO) in proteins. To further consider this question, we present a handy proteomic method based on the use of two-dimensional diagonal electrophoresis (2Dd) and cyanogen bromide (CNBr) cleavage, which we refer to as 2Dd-CNBr. CNBr treatment of proteins causes the non-enzymatic hydrolysis of peptide bonds on the carboxyl side of reduced Met residues. However, Met oxidation causes a lack of cleavage, thus modifying the electrophoretic mobility of CNBr-induced peptides. This approach was first validated using bovine serum albumin as a model protein, which confirmed the possibility of distinguishing between oxidized and non-oxidized forms of Met-containing peptides in gels. Then, the 2Dd-CNBr method was applied to the Arabidopsis thaliana seed protein extract in a control (non-oxidized) condition and in an oxidized one (as obtained following hypochlorous acid treatment). Twenty-four oxidized Met residues in 19 proteins identified by mass spectrometry were found to be surface exposed in these proteins. In the three-dimensional environment of the oxidized Met, we detected amino acid residues that could be converted by oxidation (carbonylation) or by phosphorylation, suggesting a possible interplay between Met oxidation and the other protein modifications. The identification of the proteins oxidatively modified in Met residues revealed the finding that MetO-containing proteins are related to seed longevity. Based on these results, we suggest that the method presently described also has the potential for wider applications

    Successful In Vitro Shoot Multiplication of <i>Quercus robur</i> L. Trees Aged up to 800 Years

    No full text
    The conservation of the genetic resources of old trees is crucial to their ecological role but is extremely difficult, especially for oak species (Quercus spp.) displaying recalcitrance in seed and vegetative propagation methods. Our study aimed to assess the regenerative potential of Quercus robur trees of different ages (up to 800 years) during micropropagation. We also aimed to determine how in vitro conditions can influence in vitro regeneration responses. Lignified branches collected from 67 selected trees were cultivated ex vitro in culture pots at 25 °C to obtain epicormic shoots (explant sources). The explants were cultivated on an agar medium supplemented with 0.8 mg L−1 6-benzylaminopurine (BAP) for at least 21 months. In a second experiment, two different shoot multiplication conditions (temporary immersion—RITA¼ bioreactor and agar medium) and two culture medium formulations (Woody Plant Medium and modified Quoirin and Lepoivre medium) were tested. The results showed that the mean length of the epicormic shoots obtained in a pot culture was a function of donor age and was similar among the group of younger trees (ca. 20–200 years), and varied between older trees (ca. 300–800 years). The efficiency of in vitro shoot multiplication strictly depended on the genotype. A sustainable in vitro culture (defined as survival after 6 months) was only possible for half of the tested old donor trees, even when they survived the first month of in vitro growth. A continuous monthly increase in the number of in vitro cultured shoots was reported in younger oaks and in some old oaks. We found a significant effect of the culture system and the macro- and micronutrient composition on in vitro shoot growth. This is the first report demonstrating that the in vitro culture can be successfully applied to the propagation of even 800-year-old pedunculate oak trees
    corecore