28 research outputs found

    Computation of unsteady transonic flows through rotating and stationary cascades. 2: User's guide to FORTRAN program B2DATL

    Get PDF
    Documentation for the FORTRAN program B2DATL is provided. The program input, output, and operational procedures are described; a dictionary of the principal FORTRAN variables is provided; the function of all subroutines; is outlined and flow charts of the principal subroutines and the main program are presented

    A numerical procedure for the parametric optimization of three dimensional scramjet nozzles

    Get PDF
    A numerical procedure permitting the rapid determination of the internal performance of a class of scramjet nozzle configurations is presented. The approach developed is based on the construction of quasi two dimensional simple wave networks, where lateral expansion effects are incorporated by one dimensional approximations. A numerical procedure following this approach has has been developed and results obtained are highly comparable to those obtained employing a characteristic procedure. The numerical program developed permits the parametric variation of cowl length, turning angles on the cowl and vehicle undersurface and lateral expansion and is subject to fixed constraints such as the vehicle length and nozzle exit height. The program requires uniform initial conditions at the burner exit station and yields the location of all predominant wave zones, accounting for lateral expansion effects. In addition, the program yields the detailed pressure distribution on the cowl and vehicle undersurface and calculates the nozzle thrust, lift and pitching moment

    Analysis and design of three dimensional supersonic nozzles. Volume 2: Numerical program for analysis of nozzle-exhaust flow fields

    Get PDF
    The FORTRAN IV Program developed to analyze the flow field associated with scramjet exhaust systems is presented. The instructions for preparing input and interpreting output are described. The program analyzes steady three dimensional supersonic flow by the reference plane characteristic technique. The governing equations and numerical techniques employed are presented in Volume 1 of this report

    Manual for source flow characteristics program

    Get PDF
    A computer program for analyzing the nozzle for a hypersonic scramjet by a second order characteristic procedure is described. The program used FORTRAN IV. The input routine is provided. A sample input for a source flow case is included

    A FORTRAN program for the determination of nozzle contours for rotational, non-homentropic gas mixtures

    Get PDF
    A program was written which generates a nozzle contour and the complete flow field for two dimensional or axisymetric flows designed to exit parallel to the axis at uniform pressure. The flow is that of a rotational, non-homentropic gas mixture where viscous effects were neglected and the chemistry is assumed frozen. A description of the numerical program developed, is also described

    A source flow characteristic technique for the analysis of scramjet exhaust flow field

    Get PDF
    The factors which influence the design and selection of a nozzle for a hypersonic scramjet are described. A two dimensional second-order characteristic procedure capable of analyzing the aerodynamic performance of typical nozzle configurations is presented. Equations of motion governing the two dimensional, axisymmetric, or axially expanding inviscid flow of a gas mixture, with frozen chemistry, are provided. Diagrams of the flow conditions for various configurations are included

    Time-dependent transonic flow solutions for axial turbomachinery

    Get PDF
    Three-dimensional unsteady transonic flow through an axial turbomachine stage is described in terms of a pair of two-dimensional formulations pertaining to orthogonal surfaces, namely, a blade-to-blade surface and a hub-to-casing surface. The resulting systems of nonlinear, inviscid, compressible equations of motion are solved by an explicit finite-difference technique. The blade-to-blade program includes the periodic interaction between rotor and stator blade rows. Treatment of the boundary conditions and of the blade slipstream motion by a characteristic type procedure is discussed in detail. Harmonic analysis of the acoustic far field produced by the blade row interaction, including an arbitrary initial transient, is outlined. Results from the blade-to-blade program are compared with experimental measurements of the rotating pressure field at the tip of a high-speed fan. The hub-to-casing program determines circumferentially averaged flow properties on a meridional plane. Blade row interactions are neglected in this formulation, but the force distributions over the entire blade surface for both the rotor and stator are obtained. Results from the hub-to-casing program are compared with a relaxation method solution for a subsonic rotor. Results are also presented for a quiet fan stage which includes transonic flow in both the rotor and stator and a normal shock in the stator

    Quaternary fission of 252Cf

    No full text
    corecore