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LIST OF SYMBOLS

mole fraction

C;/Cpm spgcific heat

mixture enthalpy (equilibrium option - h*/ui)

0 for two dimensional flow, 1 for axisymmetric flow

0 for two dimensional. flow, 1 for axially expanding flow
reference length (throat height)

Mach number

th specie (frozen option)

molecular weight of 1
molar concentration of ith specie (frozen option)
number of species (frozen option)

* 2

p /p U, pressure

*

q /u_ velocity

mixture gas constant (fuel/air equivalence ratio for
equilibrium option)- . :

universal gas constant
*
T /T, temperature

average molecular weight of mixture (itatic enthalpy of
mixture for equilibrium option, W - h*/uZ)

* *
% /L axial distance
y*/L* radial distance

mass fraction of ith specie (frozen option)

Page {41

ratio of specific heats (equilibrium isentropic exponent for

equilibrium option)

flow inclination relative to the x axis
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LIST OF SYMBOLS (Continued)

p = p*/p°° density
W = Mach angle
Th = Thrust (Tﬁ*/lfz)
L = Lift (L)
My = Pitching Moment (My*/fa)
* =  dimensional variables
w = free stream conditions {dimensional)
e = equilibrium

f = frozen
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I. INTRODUCTION

The design and selection of a nozzle for a hypersonic scramjet must be based
on a compromise between internal and external flow requirements related to
vehicle 1ift, drag, pitching moment, thrust, structural and weight limita-
tions. The design process involves a complex study based on engineering
analysis and refinements using complex computer programs. A logical design
sequence consists of first obtaining a satisfactory range of aerodynamic para-
meters utilizing simplified ana]ysisl’z’3 and then narrowing the range of para-
meters through more accurate but complex calculations.

This report describes a two dimensional second-order characteristic procedure
capable of analyzing the aerodynamic performance of typical nozzle configura-
tions selected from simplified analysis as shown in Figure (1).

 FIGURE 1. . TYPICAL SCRAMJET NOZZLE

However, the calculation procedure is not limited to these configurations but
can be readily adapted to calculate other two dimensional configurations. This
generality results from the use of three coordinates systems, axisymmetric,
axially expanding {source type flow) and Cartesian (plane two dimensional).
Automatic provisions for switching from axially expanding to Cartesian coordi-
nates at a specified axial station and multiple source origins are provided

for as a user option. This unique feature allows the lateral nozzle area varia-
tion, as in Figure (2), to be accounted for in a quasi-two dimensional manner,
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A higher order calculation would involve a fully three dimensional calcu-
lation which would locate the lateral waves.

FIGURE 2. MULTIPLE SOURCE ORIGINS FOR LATERAL
' NOZZLE AREA VARIATION.

The working fluid is assumed to be a hydrogen-air mixture in frozen or
chemical equilibrium. The mixture thermodynamics is expressed via curve
fits; i1.e., individual species curve fits for frozen f1ow4 and mixture fits

for equilibrium f1ow5.

The following boundary conditions are provided for in the calculation.

(1) Wall boundaries

(2) Shock boundaries (Equilibrium flow only)

(3} Contact surface (Equilibrium with shock only)
(4) Underexpansion interaction (Equilibrium only)
(5) Overexpansion interaction (Equilibrium only)
(6) Prandtl-Meyer (Equilibrium only)

While the nozzle may be over or underexpanded at the cowl, as a user option
no external interaction need be selected. It is always assumed that the
nozzle has a centerbody or lower wall,
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As part of the calculation a running integration of pressure on the nozzle
surfaces is performed which yields thrust, 1ift and pitching moment in
vehicle coordinates. The pitching moment calculation requires the Tocation
of the moment axis to be specified. Appendix III illustrates the method.

Section 1I {(a,b) describes the basic flow equationé for a rotational non-
homoentropic gas-mixture. The derivation of the characteristic equations is
given in Appendix 1 and the thermodynamic curve fit data is given in Appendix
II. Section II{c) describes the numerical scheme and grid employed, while
Section III discusses the various boundary conditions. Some sample calcula-
tions are presented in Section IV, and Section VI contains conc1udihg remarks.
Reference (7) contains a description of the program and a sample input.
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II. BASIC EQUATIONS

A. Frozen Chemistry - The equations governing the two dimensional,
axisymmetric, or axially expanding inviscid flow of a gas mixture, with

frozen chemistry, may be written as follows:

Continuity: %égg)_T pq tdy Eﬁ-snne *dy S Eg-cose = 0 (1)

S-Momentum: Pq 3% + —E =0 _ (2)

N-Momentum: pq2 gz + Eﬁ' | ' ' (3)

Energy: | ———1—- C, q —E- | . (4a)

(y,-1) M :
Species Con- LT
servation: 55 =0 (i=1, NSP) (5a)
T '

State: p=fr —» : (6a)

: B : v M o

where J1 and 02 are the axisymmetric and axially expanding (source) terms re-
spectively, By stra1ghtf0rward algebraic maniupulation, the above equations
may be cast into characteristic form (as done in Appendix I).

Let C, dencte an up-running and C_ denote a down- -running character1st1c * Then,
a]ong a C characteristic, whose slope is expressed by:

.%%_: tan (eiuf) | } (7a)

the compatibility relation may be written

S1nuf (:051.1_F d 1n 5

s

sing , ; cose S1hue

+ d J, === —_— *
8+ ( 1 y 2 X COS(Biu.{:) ) (8&)

* The use of d(LnP) in place of E% considerably improves the accuracy of the

results for a given mesh spacing.
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It is to be noted that at a point in the flow (x,y), the properties are
completely specified by q, T, p, & and a, (i=1, NSP). DOther variables
may be calculated as follows.

The molecular weight is expressed by

hence the mixture's gas constant is

Ry

Rz—w—_

The density is obtained from the equation of state

The thermodynamic properties Cp'(T), hi(T) and si(T) are tabulated poly-
nomials, & description of which1may be found in Appendix II.

The specifit heat of the mixture is expressed by

~ NSP | - (

c. =1 € o, . ‘ 10)

Pe o i=1 Py
and the ratioc of specific heats by
C - .
Pt
Y¢ T C_-R/C. | (11)
Ps Peo

The 1ocal frozen Mach number is

Ma YR, C
Me = —— R
YT Y

(12)

and the Mach angle is given by

e = sinfl ﬁ&- (13a)
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B. Equilibrium Chemistry - The eguations governing the two dimen-
sional, axisymmetric, or axially expanding inviscid flow of a gas mixture
in chemical equilibrium may be written as follows:

. R LR sine Cos® _
Continuity: 3% {eq) + eq g+ Jp 09 S5+ Jy pQ =5 (1)
] . 29 , 3P . |
S-Momentum: pq st 3o =0 B (2)
. 230 .8 . (

N-Momentum: Q" 75 * 5o 0 . - (3)
Conservation of aH- 12 ’ _ ‘
Stagnation Enthalpy: 3s 0 where H =htzq : , ‘ (4b)
Constancy of Equiva- :
lence Ratio Along - g%-= 0 (5b)
Streamlines:
Caloric Equation r . .
of State: _ - p/e' = constant (6b)
where the equilibrium jsentropic exponent is given by

T = f(h, p,o)* - (14)
Then along the C_ characteristic whose slope is given by

%¥-=jtan(eipe) {7b)
the compatibility relation méy be written as

sing_ cosy . sihp

e e sing COS0 e _

Thus, at a point (x,y} in the flow the properties q, h, p, o, Ty ¢,6 are known.

¥Fits for T have been expressed in polynomial form from properties tabulated
in Reference (5 } as described in Appendix II.
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The local equilibrium Mach number and Mach angle are given by

Mo = q/ae (15)
o oL.=1 1 .
and Mg = sin © - , | | (13b)
) e
2 _ _ :
where a, =T p/p _ (16)

C. Numerical Procedure and Characteristic Network - Figure
(3) depicts the global grid ordering scheme used in the present program.
While a free running characteristic network is used the program orders and

stores data along down-running (C_) characteristicsﬁ. The only exception

being the initial data line which must be a non-characteristic 1ine. The’
marching proceeds from one C_ line to another until the desired flow field
is calculated.

A typical characteristic mesh is depicted in Figure (4), properties being
known along the line AB and to be determined at the point C.

FIGURE 4. CHARACTERISTIC MESH
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Let
My = a tan(e+u), + s tan(e+p)c | (17a) |
.Mz =g tan(e-u)B + 8 tan(e-u)C - (17b) '¥
and My = « tan o, + 8 tan o (17¢)

The Mach angles (u) are the local values corresponding to either frozen or
equilibrium flow, The « and 8 in the above and following equations are

used as artifices in averaging properties along characteristics. In a first
approximation o would be set equal to one and g equal to zero, thus fixing
values at the points A, B or D. Once properties at point C are determined,
the coefficients involved in the calculation are averaged by setting both

o and B equal to one-half. This corresponds to the second iteration.
Writing Equation (7) in finite difference form

N

Yo Ip |
— = M 4 (18a)
Xe=Xp 1 .
and
Yo
CYB
=M : {18b)

Solving the above yields

: Yo=Y Mo X, =M, x
X = =2 AMIEMQ 2’8 | (19a)

o Yo T ¥ + MI(XC_XA) (19b)
For frozen flow let

A

1 = c"(S'll'l't-l.?f.'.()!‘i]»i) + B(smu COSU) | (203)

A Y C

L= (sinuTcosu) 4 B(sinu cosuy _ (200)
B i C
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for equilibrium flow the Mach number and angles u are the local eqdilibrium
values and the ratio of specific heats y is replaced by the equilibrium ex-
ponent I'. Similar remarks apply to all further characteristic coefficients.

- sing sinu sing sinu
Ay = J; [“(y cosle+uj)A * 5(5723513137001 (21a)
cosé sinu cose sinu '
* g Ll 605(9+u5 cos(e+p) (21b)
= singe sinu sine sin
32 = !J]_ [G(y—‘(cos Bp) )B + B(y—co?(ﬁy)c] {(21c)
+

cosé sin cos8 sin '
Jy lalg cosla-u))B + 8(5 cosle-ui)cl . - (21d)
Hence, along AC (C+ characteristic)
Ay {In Pe - In pA) + ecfeA + A2 (xc—xA) = 0 (22a)
and along BC (C_ characteristic)
By (1n Pc - In pB) - eptep 82 (xc-xB) =0 ' (22b)

Solving the above equations for 1In Pe yields

np. = (A Tnpy + By Inpy+ 0p~0p - (A2+Bz) Xc

, (23)
+ Ay Xy * By xg)/(Ay + By)
hence p. = exp (In pc) and the flow inclination is
- Bc = SA - A]. (]n pc - In PA) - Az (XC—XA) . (24)

If either the entropy or stagnation enthalpyis not constant thfoughout the
flow field, the streamiines are the third family of characteristics, whose
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slope is given by

dy . - | ‘
i = tan @ , (25)

Then, in difference form,

Ye-¥
CD .y (26)
Xc~Xp 3
Referring to Figure (4), the point D lies between points A and B and can be .
located by an iterative procedure using Equation (26). Properties at point
D are then obtained by l1inearly interpolating between A and B.
The velocity at point C is found using the S-Momentum equation in the form; _
. C "D [aleg)y*elpq).] |
If the chemistry is frozen the temperature may be obtained using the Energy
_ Equation (4a) along CD. That is '
2
(v,-1M_ (pe-pp)
T, =T, + ¢ D (28)
C~ D a(pCp) +8{pC, )
' D Pe
The Species Conservation Equation (4a) yields
@y = oy (i = 1, NSP) _ - (29)
c D ,
and the remaining variables are found usingEquations (6a) through (13a).
If the chemistry is in equilibrium the Energy Equation (4b)yields the static
enthalpy ' '
_ 2 2 '
he = hy + (g5 = a7)/2 | (30)

and the constancy of ‘equivalence ratio along streamlines yields
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o = @D | o o (31)
the curve fits for the isentropic exponent T yield

o * r(pc. he s ¢C) o o | (14)

and the State Equation (6b) yields the density.

The remaining variables are obtained from Equations {13b), (15) and (16).

‘The calculation is then repéated with the coefficients averaged, by setting

a and 8 equal to 1/2. If properties change significantly between these two

sets of calculations, this generally implies too large a mesh in this region, .
ST in, | N S

(B A
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III. - BOUNDARY CALCULATIONS

: A. Upper Or Lower Wall - The nozzle wall shapes, either upper
wall {cowl) or lower wall (vehicle undersurface) are specified by polynomials
of the form

¥y = A.(x-xi)z

5= A #Bylxxg) 4 ¢y (322)

where X; is the origin of the wall. A maximum of 3 wall segments are permitted,
i.e., j = 3. The wall slope o, is given by '

tan e, = 2Aj(x-x1) + Bj . | | - (32b)

In Figure (5), DC is the specified upper nozzle wall. The point A lies on

FIGURE 5. WALL POINT

the C_ characteristic DA on which all properties are known and point C is
Tocated for « = 1 and & = 0 by a simultaneous solution of Equatien (32a) and

Y
Xc™*A

= g tan(e+u)A + 8 tan(e+u)C =M (33)

Note that this solution involves a minor iteration since (xc, yc) and hence
6c = aw(xc) are not known a priori.



TR 186 Page 14

Having located point C, oc is known and the compatibility relation along AC,
i.e., Equation (22a) determines the pressure Pc

6, = 8. = A, (X =X
np, = 1n py + A—C, 2t%c7*a)
1

the streamline equations applied along DC for either frozen or equilibrium

. Pe = exp(in pc) (34)

flow then determine the remaining fiow variables. The process is then re-
peated for o = %3 B =-%. Similar remarks apply for a lower wall calcula-
tion except the characteristic relation (Equation 22b) is applied along

a down characteristic (C_).

B. Shock Phenomena - The prbgram developed has the capability
of computing the shock strength associated with an inviscid supersonic over
or under-expansion process, and a shock propagating into a nonuniform media.

| 1, Hugoniot Relations =~ Assume a coordinate system
oriented along (E direction) and normal to the shock surface (ﬁ direction)
as shown in Figure (6)}). The angle sigma ¢ is the direction cosine of the shock
with respect to the Cartesian direction x, and U and ¥ are the velocity com-
ponents in the n and t directions.

-

n = - sinei, + cosoi, - (35)
t = cosoi, + sinai, : (36)
" T T .
v 1Y: un+v,ts=ui f viy (37)
A
A n =« sinoi_ + cosoi
n,u . j X y
7 t, t : = ccvs;or*iAx +'si?ciy
. //ﬁfgfggb ' M= - Mg+ Mg t
e
Mm e ‘}“_ M =M (cosei_ + sinsi )
.o i_———we / ;x «® Led X y

FIGURE 6. SHOCK COORDINATES
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The Rankine Hugoniot relations for a mixture in chemical equilibrium take

the form
Continuity: ' plal = pzﬁz
Normal
Momentum: Py + plﬁf = py pzﬁg
Tangential N N
Momentum:. Ve, T Vt
1 2
Energy: H=h+ %—V = constant
State: p = o{p, hy #)
where ¢ = constant

&

Employing the jump relations for a given shock angle and upstream conditions
requires an iteration process since the mixture is calorically imperfect.

Let 1 designate upstfeam conditions and 2 downstream conditions. To solve
the jump relations knowing conditions at 1, a value for ﬁz is assumed. The
density p, is computed using Equation (38), p, is computed using Equation
(39) and Equation (41) yields a value for h,. The State Equation (42) then
yields an alternate value for the density. If this value for density does
not agree with that calculated from continuity to within a specified toler-
ancé, a new value of 32 is assumed and this process is repeated until con-
vergence is achieved.

2. Shock Point Calculation - Referring to Figure (7),
a typical shock wave calculation is performed as follows. A value of the
shock angle o is assumed, and a simultaneous solution of the equations

(38)

(39)

(40)

(41)

(42)

(43)
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FIGURE 7. SHOCK POINT CALCULATION
: yc"yA 1 ( )
= = {tan 8. + tan @

xc-xAl 2 C A1
and

o

Xe=Xg 2
yields Xes Yoo

Since this flow is nonuniform a characteristic calculation similar to an
interior point calculation yields the flow properties at Cl. Note that
point E on the C_ characterist1C‘EC1 is interpolated between B and Al.

The jump relations (Equations 38 - 43) are solved using the determined up-
stream conditions based on the assumed angle o - This yields all properties
at C2‘ Using the deflection angle SCZ calculated from the jump conditions,
aC, characteristic calculation performed along (F-Cz) yields an alternate
value of the pressure at Pe.,- The pressures are compared and if the dif-
ference exceeds a specified tolerance, a new value of o is assumed and

the- process repeated until convergence is obtained. After convérgence with
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¢ =1, § = 0, the calculation is repeated using o = %3 g = %w

C. Under-Expansicn Interaction -~ The program developed has the

capability for equilibrium flows of computing the under-expansion interaction
produced by pressure mismatch between the nozzle and a surrounding airstream.
This situation is depicted in Figure (8a). Under-~expansion conditions occur

Contact
P]zpz,el_ez

Prandtl-
j e - Meyer

Vehicle

/77

FIGURE 8a. UNDER~EXPANSION INTERACTION

as a result of either Pj > Pe or e‘j > 64 Or some combination of both condi-
Vtions. Generally Pj > > Pe defines an under-expanded flow. It is assumed
that during the under-expansion interaction, the species remain chemically
in equilibrium. The expansion is isentropic and the local interaction is

two dimensional and inviscid in the 1imit of vanishing radial distance with

respect to the cowl edge.

The basic equations describing the Prandtl-Meyer expansion process are

p/pr = constant
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h + %-V = constant
dp , 142y -
> * 5 d(v=) = 0

1 -
=~dlin{p) de =0

r=r {p, h,#) where¢s= constant

For a small incremental step ap, Equations (46), (47) 14) and (50) can be
written

/2 2 .
2= V1= - G 1R Q)

1 -
?-1n (p2/p1) + (az-el) = 0
pz/Pg = pl/Dg

where T is held constant in the integration step, yielding values for VZ'
p, and 8,. Then Equation (45) yields hz. In this manner, the Prandtl-
Meyer equations may be integrated, for a mixture in equilibrium.

Since the flow deflection and pressure downstream of the shock wave and
Prandt]-Meyer are unknown an iteration process is required. A typical in-
teraction calculation proceeds as follows. A shock wave angle is assumed

for which flow properties (p, h, © etc.) are computed downstream of the shock
wave. Equations (44) through (47} are solved using small increments of ap.
The pressure behind the shock is the final pressure and the jet pressure is
the initial pressure. If the turning angle for the expansion does not agree
with the flow angle behind the shock to within a specified tolerance, a new
shock wave angle is assumed and the process repeated until convergence is
obtained.

(45)
(46)

(47)

(14)

(48)

(49)

(50)
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After this solution is obtained, the program continues the normal calcula-
tion procedure until the last expansion ray is completed. The program
terminates the calculation along the last ray. It is anticipated that the
flow along the dividing streamline will not in general affect the pressure
distribution along the undersurface, for the vehicles to be considered.

D. Over-expansion Phenomena - The nozzle over-expansion at the

cowl is computed in a similar fashion to the under-expansion phenomena,
except that a shock wave is required in the nozzle flow and an expansion in
the external flow as depicted in Figure (8b). For purposes of simplicity

P Me>t / ~— PRAHDTL- MEYER
vl f

Ve
TITER T onrac
)
Ty ¢
3 ?ev SHOCK

FIGURE 8b. OVER-EXPANSION INTERACTION

it is assumed that the external flow is initially uniform with constant ratio
of specific heats. Further, it is assumed that pressure-flow deflection re-
lationship on the external side of the dividing streamline is described by
simple Prandtl-Meyer relations. These assumptions do not inhibit the programs
genera]ity, but are intended only to simplify the computation. They are
readily removed and more general but complex methods can be used if the need
arises.
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Since the program stores data on C_ characteristics, shock waves of the C,
family are conveniently traced Thus, in order not to disrupt the program
logic the problem is inverted so as to trace the over-expansion shock as a
C, wave. This procedure is performed automatically as part of the program
logic.

E. Contact Surface - A contact surface is a stream surface of
the flow, therefore, the pressure and flow deflection must be continuous
across the discontinuity. Figure (9) illustrates a contact surface calcula-

EXTERMAL
FLOW

No2FLE
FLOW

FIGURE 9. CONTACT CALCULATION

tion for supersonic flow. In the present program the characteristic on the
external flow side is replaced by a Prandtl-Meyer pressure-flow deflection
relation and the external flow is assumed uniform. The solution requires a
iterative procedure similar to a wall boundary calculation except that the
shape of the boundary (i.e., contact surface) is not known a priori.
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In Figure (9) CD is the contact and point A 1ies on a C_ characteristic
CA, on which all properties have previously been calculated. A guess is
made for eD and for « = 1 and 8 = 0 a simultaneous solution of the equations

+ tan ec) = M3 (51)

1
— = = (tan @
xD XC 2 D
and
Yn-Y ,
xD-xA = M1 , : : (18a)
D "A nozzle '

yields XD and YD. Using the quessed value of ®p from the characteristic re-
lation along AC and the Prandtl-Meyer relation in the external stream two
values of pressure are obtained at D, If these do not agree to within a
specified tolerance a new guess for 8y is made and the process repeated -
until convergence is achieved. Using the streamline relations along CD the
remaining properties (g, h, T etc.) are computed on each side of the dis-

continuity and the process repeated for o = %u B = %n

F. Shock Reflection At Wall - The incident and reflected strength
of a shock wave at a wall boundary is determined by the condition that down-
stream of the reflected wave (3) the flow deflection at the wall must equal
the wall slope; Figure (10) depicts this interaction.

D
5

f

REFLELTED
SHOCK {{))

INCIDENT
SHOCK (C4)

FIGURE 10, SHOCK REFLECTION AT WALL



TR 186 | ‘ Page 22

The solution requires an iterative procedure since the reflected wave
strength is a function of the data downstream of the incident wave (2) and
subject to the above constraint. A shock angle sigma (cl) is assumed for
the incident wave and the location of the shock wall intersection (xD, yD)
is computed using

YY
%o 3 (tan o + tan cB) M3

1 .
and

_ 2

which yields (xD, Yp+ eD)',

Since the flow upstream of the shock wave is nonuniform, a characteristic
solution similar to a wall calculation is required to determine the flow
propert{es at Dl' Note that point A is interpolated on the C_ character-
istic CBy. Then the Hugoniot relations Equations (38) through (43) yield
the flow properties downstream of the incident wave (2). The pressure from
this calculation is then compared with a characteristic calculation along
ED, on the downstream side, Point E is interpolated on C_ characteristic
BZF‘ If the pressures do not agree to within a specified tolerance, a new
shock angle is assumed and the process repeated until convergence.

These properties are then used as upstream conditions for the reflected wave.
Assuming a reflected wave angle sigma (03) the Hugoniot relations yie]d,the
flow properties downstream. If the flow angle does not agree with the wall
angle to within a specified tolerance a new reflected wave angle is assumed
and the process repeated until convergence, After convergence the entire
calculation is repeated with « = %—and B =‘%. '

Since the'program togic stores data only on C_ characteriétics, shock waves
of the C_ family are conveniently traced. However, the reflected wave is a
C_ wave as depicted in Figures (3) and (10). In order not to disrupt the

program logic, after computing the strength of the reflected wave the flow
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field is automatically inverted making the reflected wave a C_ shock wave.
Special provisions are required, however, for storing new initial data along
a line which enables the propagation strength of the reflected wave to be
computed up to the next boundary. The program logic is such that these re-
quirements are performed automatically. The overall grid for this calcula-
tion is shown in Figure (3) of Section IIC.
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IV, SAMPLE CALCULATIONS

Figure (11) depicts an under-expanded nozzle calculation using NASA sup-
plied geometry and initial conditions. The upper curves represent a com-
parison of vehicle undersurface pressures between two dimensional NASA
calculations and the subject ATL program. Excellent agreement is seen

to exist over the length of the undersurface.

The lower curve in Figure (11) represents a nozzle with the same geometry
and initial conditions except that a lateral nozzle area variation has
been provided for between the throat surface and the cowl. The origin of
the source is at x/ht = 7. Downstream of the cowl the flow is assumed to
be two dimensional. The lateral area variation is seen to produce sig- -
nificant changes in the pressure distribution on the undersurface and in
the location and strength of waves. Thus, this approximation to the
lateral area variation can be a powerful tool in the design of scramjet
nozzle exhaust flow fields.

Figures (12) and (13) demonstrates the programs capability to calculate

- over-expanded nozzle flows. Figure {12) is a trace of the vehicle geometry,
shock shape and contact shape upto x/hy = 27. Figure (13) indicates the
pressure distributions on the cowl - contact surface and the vehicle under-
surface for this case. The under-expansion shock jump is clearly visible
at the cowl trailing edge (x/ht = 6).
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UNDER-EXPANDED FLOW

A, Case la - Two Dimensiona]l

Initial Conditions

Temperature (T/1)

Pressure (p/p,)
Velocity {a/u)
Mach Number M
Flow Angle e

Equivalence Ratio ¢

Source origin -~ none, two dimensional

External Flow

Temperature (T/T.)

Pressure (p/p,)
Velocity {a/u,)
Mach Number M
Flow Angle g

Equivalence Ratio ¢

Geometry - Y=AX2+BX+C
Vehicle

X 0« .4 A - 8.0

A ~.5565 0

B 0 -.4452

C -0 .08905

B. Case Ib - Source Flow

10.1
36.65
0.929
2.91
0.
1.0

1.0
1.0
1.0
10.

8.0 - End.

.01019
-.6082

.7410

Free Stream Conditions

Altitude - 101,800 ft.
Mach Number M_ -~ 10,
Pressure p_ - 23.09 ]b/ft2
Temperature T_ - 418.8%R
Cowl
0- .4 4 - 3.0
.1314 0
0 .1051

1.0 .9790

All data is the same as Casg (Ia) except initial source origin is located

at X = "'700.
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p, = 23.09 psf (p/p ) = 36.65
.i,
T_=418.8°R  (T/T) =10.1
. i
g -Mi = 2,91
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FIGURE 11. VEHICLE UNDER-EXPANDED PRESSURE DISTRIBUTION
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TABLE II
QVER-EXPANDED FLOW

Case Il - Two Dimensional

Initial Conditions ‘ Free Stream Conditions
Temperature (T/T,) - 10.77 | Altitude - 60,000 ft.
Prassure (p/p,) ~ 20.55 Mach Number - 4.0
Velocity (q/u_) - ,904 Pressure p_ - 151 1bs/ft2
Mach Number M - 1.09 Temperature T - 390°R
Flow Angle 8 - 0.
Equivalence Ratio ¢ - 0.
Source origin - none, two dimensional
External Flow
Temperature (T/7_) - 1.327
Pressure (p/p.) - 2.493
Velocity (q/u ) - .95
Mach Number M - 6.67
Flow Angle 0 - 0.
Equivalence Ratio ¢ - 0.
Geometry - Y=AX2+BX+C
Vehicle “Cowl
X 0~ .4 .4 ~ 8.0 8.0 - End 0-.4 A - 6.0
A - -.55665 0 .01019 L3117 0
B 0 -.4452 -.6082 0 ©.2493
c

0 .08805 .7410 1.0 .9501
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30 ‘ | - M = 4.0 Alt. = 60,000 ft.

b, = 151 1b/ft% (p/p_) = 20.55
B ‘ 1
T, = 390°R (/1) = 10.8
: i
' M;=1.09
¢ = 0, Equilibrium Air
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8
Q.
=
Contact
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b

FIGURE 13. THWO DIMENSIONAL OVER-EXPANDED FLOW
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V. CONCLUSIONS

A unique characteristic procedure has been developed which computes realistic
scramjet nozzle exhaust flow fields. The use of an axially expanding co-
ordinate system (1ine source) allows lateral nozzle area variations to be
accounted for in a quasi two dimensional fashion. Additional géometric
flexibility is incorporated in the numerical procedure through the use of
additional coordinate systems i.e., axisymmetric, and Cartesian.

The numerical procedure uses a.free running characteristic grid, but stores
data on the C_ characteristics. The technique is second order accurate in
the characteristic sense.

The wide variety of boundary conditions incorporated into the program permits
the calculation of wall boundaries, shock boundaries, contact boundaries,
shock-wall intersections and over or under-expansion interactions.

The use of the unique hydrogen-air equilibrium curve fits developed in Refer-
ence (5), as well as frozen hydrogen-air chemistry permits bounding the com-
plex chemical phenomena which occur in exhaust nozzle flows.

Thus, it is felt that the current program will give the designer of scrahjet
nozzle exhaust flow fields a fiexibility not available with previous methods.



28

TR 186
- REFERENCES
1. Ferri, A., "Analysis and Design of Three Dimensional Supersonic

Nozzles -- A Design Technique for Multiple Nozzle Configurations,"
ATL TR 166, Volume III, October 1972,

Ferri, A. and Del Guidice, P., "A Design Technique for Multiple

Nozzle Configurations,” ATL TM 174, May 1973.

Ferri, A., "Methodology for Three Dimensional Nozzle Design," ATL
T™ 176, August 1973. ,

McBride, B. J., Heimel, J.6 Ehlers, S. G. and Gordon, S., "Thermo-
dynamic Properties to 6000°K for 210 Substances Involving the First
18 Elements," NASA SP-3001 (1963).

Dash, S. and Del Guidice, P., "Analysis and Design of Three Dimen-
sional Supersonic Nozzles -- MNozzle Exhaust Flow Field Analysis by
a Reference Plane Characteristic Technique," ATL TR 166, Volume I,
October 1972, : .

Dash, S.; "The Determination of Nozzle Contours for Rotaticnal, Non-
Homentropic Gas Mixtures," ATL TR 148, March 1970.

Kalben, P, aﬁd Del Guidice, P., "FORTRAN Program Manual for Source
Flow Characteristics Procedure,” ATL TM 179, March 1974.



Page Al-1
TR 186 rage nint

APPENDIX I

R CHARACTERISTIC DERIVATION
' | “FROZEN FLOW' '

The continuity equation {Equation (1)) may be expanding yield-
ing: |

39 4 ¢ 30 4 0q 29 i 3 P9 gin o4 o .
T toooteq s o sin B-ﬁ.qz 29 cos 8 = 0

From the s-momentum equatjon

29 13p
P39 ~ " q.35s
and usihg both the Equation of State (6) and the energy Lqua«

tion (4), the term %%_may be replaced by-

Bp _ (W7, M2 o (ver1) 2 | 3P
FE 'T"ﬁ:' w - EE;?“m © | 35

Making these substitutions in Equation (I.1), and multiplying

through by g, we obtain

By algebraic maniﬁujation, using Equations (11) and (12), the

(1.1)

(I.2)
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APPENDIX I (Continued)

1

EES

term multiplying 2P (I.2) may be reduced to (Mz-l) and

Page Al-2

i

hence Equation (I.2) becomes

2
(M°-1) 3p , 28
pQ as ¥ an

Using Equations {11) and (14) pq2 = ypM2..

stitution in both Equations (I1.3) and the normal momentum

equation, we obtain

‘ (Mz—l) 3p , 38
e L

o1 ap ., 38 .

2 3a  3s

The total derivatives of

3p, ds +.§.p_ dn
s an

/
" il ds + ae dn
95 an

:Nritten in matrlx form, the above system (Equations (I 4) through

(I 7)1} becomes

p

J ‘ J
1 2
+ Y—31n B +

x—cos 8 =0

and 6 may be:expressed by:

dp

ds

Making this sub-

(1.3)

(1.4)
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APPENDIX I (Continued)

W
+*

o oy S,
f(l"l‘?-l)/wrpl"i2 0o 0 1 -g% -~ (visin 6
_ 7
_ t g cosg)

0 1/yM%p 1 0 3 0

- - - an ‘
ds dn 00 22 dp
0 0 ds dn/ 28 de

n.n .

. The characteristic directions of this system of equations are
obtained by setting the determirant of the coefficient matrix

equal to zero,

(Mz-l)/yﬁzp 0 o1
0 ‘1/7M2p 1 0.

5 ds dn 0 0 .
0 0 ds  dn
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2

obtaining %% = ?_%#_; . Hence the characteristics are lines
, M*-1
whose slope is given by
Q% = * - tanu (1.10)
YMé-1

or expressed in Cartesian coordinates

%f = tan(8ty) _ | . (I.11)

The compatibility relation along the characteristicslis ob-
tained by replacing any column of the coefficient matrix with
the vector on the right-hand side of Equation (I1.8) and setting

the determinant of this matrix équa] to zero,

1

Jlsine

- 1

( " 0 0
J
2

o cos56 )
0 ——1—2- 1 0 |

yMop

dp dn 0 0
de 0 ds dn

Expanding the determinant and using Equation (I.10) we obtain

the compatibility relation (Equation 8).

. Jysineg J,cost
s1nchosu d In p + do + ( 1 - 2 )

¥ X
s5in B
{cos6y) dx 0

(I.13)
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Since we may write total derivatives for the changes in entropy,
stagnation enthalpy and species mass fraction along streamlines,
the streamlines act as characteristics in the flow field. Hence,

along a streamiine, whose slope is given by

dy . ‘ :
X tans (1.14)

the foliowing equatiohs hold:

ds =0 - (1.15)
di =0 (1.16)
and da; = 0 | f - (1.17a)

1

For a flow in chemical equilibrium the derivation is identical
with the frozen ratio of specific heats f replaced by T and the
Mach number defined in terms of the local equilibrium sound

speed. Equation (I.17a) is replaced by

de

n
Lo ]

(1.17b)
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APPENDIX TIa

THERMODYNAMIC COEEFICIENTS
FOR FROZEN SPECIES

The following thermodynamic properties have been tabulated as

polynomials in temperature (in degrees Kelvin) in the form be-

‘low:

p. : .‘ . .
7{§-= ayp t ap T* + ajg sz + ay T*3 + a5T*4 -~ (Ilas1)
* .
a a a a a .
E-1}= a; + A L —i‘l‘*2 v 2 T*3 $ =2 T*4 + 28 (112.2)
ol 2 3 4 5 SR
STE L o an T e e, Tt o D272y 2A el (I1a:3)
R 2 2. 3 &
55' *4
+ 2
t 3 T

[

“The coeff1ents (a1 - 2y ) have been tabulated for the temperature

1nterva1s 300° to 1000%% and 1000° to 5000°k in Reference (4).

;.
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. APPENDIX IIb

EQUILIBRIUM HYDROGEN-AIR

‘TURVE FITS FOR F, h and p*

The varﬁation of I' (the equilibrium Va1uenof v) as a func-
tion of temperéture (T), pressure (P) and ‘equivalence ratio
- {¢) is presented graphicé]]y‘in Figures (AI),-(AZ) and {A3)
froh values tabulated in Refeféqce (4). In Figure (Al) it
‘can be seen that T is a strong function of T over the tem-
perature range of interest, while the effect 6f varying conm-
po;ition is small by comparison, Moreover, Figure (A2) in-
dicates that T is moderate1y‘sensitive to pressure and the
degree of sensitivity increases Qubstantiél!y as the tempera-
ture level increases and dissociation effects be;ome impor-

~tant. -

~ As a result of these 6bservations, témpératuré‘is.the'pri-
.mary inJependent variable, while pressure is the secondary
~fndebendent variable and composjtion'acts as a perturbation
variable.  Thus, Qe can fit the function T (T;P,é) with a
polynomial in T and add on a temperature dependent correc-
tioniterm for the effect of pressure and a temperature in-

[

: dependent correction term for the effect of .
An examination of Figure (A1) suggest that the function I (T)
icaﬁ best be curve fit by breaking up the temperature range

jnte three intervals such that the functicon can be represent-
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ed by a parabola in each range. Choosing p = 10° pascal and

¢=1 as our base, we therefore find three functions

ry(1,105,1)

ro(T7,10%,1)

ra(1,10°

1)

4

- 1.833x1077 T2 + 7.5x107% T + 1.367

|
™)

.0x10-8 72 - 1.38x107% 7 + 1.423

1
~J

27x10-8 T2 - 4.57x10-4 T + 1.85

and define the basic temperature function as

o |rq(T,205,1) | T<500°K
_'r(T,105,1) ={r,(7,10%,1) ) for 500<T<2000°K
rg(7,10%,1) T>2000°K

_Figure (A3) indicates that 8l is constant in the two ranges

o

¢<1 and_&>1, but is a function of T. Fitting the function

"aT in each of the ranges‘of o we obtain

9@

where

oL - " for °2!
8 nz(T) $>1

o

np(T) = ax167% 72 - 2x10°% T - 0.019

4 .

n,(T) = 3.39x10°2 10-5 = 3.91x107* 7 - 0.681

{11b.1)
(11b.2)

(116.3)

(1Ib.4)

(if§.5)

(I11b.6)

(I1b.7)
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This now defines T as a function of both temperature and ¢

by means of the equation ;

- 1 . . -
+ . . . B 4

r(1,105,8) = I(T,10%,1) + (031) %%

Finally, the effect of pressure must be included. From

Figure (18) we observe that I may be approximated as
. p(T,P,e) = I(T,105,8) + m [log,(p) - 5] :-
“where m is a function of T. Deriving m, we find

0 oo b [ 1<1000%
, _ "é oL o e o Ly for 4L
-2.15x107872+0.91x107%7-0.0695 [ ~ | T21000°K

Summarizing, the final function obtained is

ar

e p(T,P,0) = 1(7,105,1) + m(10B u5) + 3T (0-1)

where the functions r(1,10%,1), gz_and'm are given by kqua-
' R :
tions (4), (5) and (10) respectively.

(I1b.8)

(11b.9)

(11b.10)

The curve fit for enthdlpy is derived in & similar way. Figures

(A-4) and (A-S) present the variation of h with témperature,

‘pressure and equivalence ratio. As was the case for I', the
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function h(T; ¢, p) is-fit by a quadratié functfon of T, the
coefficfents of which are functions of'¢ and an additive term
}or the effects of pressure. The resulting éurve fit is sum-
marized beTow. I

-

h(T,o,p) = .h(T’(‘b’mS) for {2000 (11b.11)
| h(Tf¢,p) . | 7>2000°%K e
where h(T,¢,p) = h(T,¢,1055.‘1‘f
| [(“"’%égazooo) | .125(}2—%'-5-)2-.275(;%—5)}} (116.12)
The bé;icAfunctionh(T,¢5105) js defined a;'
h(T.6,105) ‘=- ;06 (a,TsziT+c1) . | | k(fIbJJ)
with thé;coefficients_al, by and ¢y defined below:
For_i - T < éDO?DK and.¢ <1 o | - _ :(IIb:i4)
" 51 . 1077 (-.1042¢% + .8242$ +;987)‘
by 5 10-3:(;01167¢2'+ .1503¢ + .938)_:  ;_ - (fﬂﬂié)

-.02846% +..6731 ¢ + .4293
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For T € 2000 and ¢ > 1

1077 (1.7876% - 5.48¢ + 5.4)

a1 =
by = 1073 (-.1867¢% + 1.11¢ + .176) (11b.16)
c; = -.0933p% + 3.9759 - 2.808 -
For- T > 2000°K and ¢ < 1 -
a; = 1076 (1.792¢% + .3983¢ + .310)
= '3 - 2 - ,
by 10-3 (-9.05¢2 - .07917¢ + .245) (115.17)
¢, = 10.86¢° - .1183¢ + .970
For - T > 2000°K and ¢ > 1
a; = 1076 (4.81¢7 - 13.9¢ +11.59)
. 5 ) o | (I1b.18)
“ by = 1073 (-23.08¢% + 66.82¢ - 52.61) S
¢y = 27.05¢% - 73.73¢ + 58.39

When the inverse function T(h,$,p) is required, it is obtained

by an iterative solution of Equations {(12) through (18)

The density is found by obtaining a curve fit for the mixture

"molecular weight and using the equation of state
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p = bm o (11b.19)
RT o ‘

5
.
[l

where R is the universal gas gonstént and m is the molecular

weight,

The behavior of m with T,p and & is iilustrated in Figures (A6)
and (A7). We see that for temperétures less than 2000%K, m is
essentiaT]y independent of températuré. The discontinuity in
slope of m(¢) shown in Figure (A7) requires that the equiva]enée

ratio range be split in two. Thus,

for T & 2000°K
1 1.53¢2-5,895¢+428.,965 ¢ <1
-m(9) = ) | . for (11b.20)
1.600%-10.6¢+33.6 ¢ > 1
For the higher temperature range, it is convenient to employ
the form
i m=mn{¢) - &{p,s,T) : | o *(fﬂle)

. where

| , p(9) | .
y (T-2000y -2 - e
- da(ps¢) (——Tﬁaﬁ ) ~ (I1b.22)

. O
B
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and

o -
[
1

2 (FM T+ by gy 4,  (11b.23)

A

-2.3¢2 +.4.01¢ + 1.736

o
[

- 8.61¢2 - 15.42¢ - 6.66
For 0<¢sl ) {11b.24)
- - : -16.88¢% + 33.21¢ + 14.58

C2 = .
n, = .4375¢2 + .0625¢ + 2.08
ap = -.822¢% + 2.363¢ + 1.905
. | b, = 2.76¢%2 - 7.56¢ - 8.68 |
and for 1<p<2 , 2 ' (11b,25)
' u ‘ . Co = 3.6¢° + 7.36¢ + 27.15
n, = .476% + 1.825¢ + .350
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APPENDIX III

THRUST, LIFT AND PITCHING MOMENT

In general, the thrust, 1ift and pitching moment can be defined from the follow-

ing pressure integral taken over all the nozzle surfaces up to the final X sta-
tion (XFINAL), i.e.:

T, = ﬂ/f (p-p,) i -dA_ (I11.1a)
_Ly = J/F(p-pm) 1y-dAn (II1.1b)
A : :
| R s
My = - (p-p) 1 -xdA, + (p-p.) 1,-¥dA (11I.1c)

A “A

where the éoordinate system and vehicle configuration are depicted in Figure
(III-1),

However, since the lateral geometry of the nozzle is treatad approximately, it
is not possible to determine the lateral.contributions to - the above integrals by
direct pressure integration. The use of the integral conservation theorems .
provides, however, an dlternate means of defining the thrust, 1ift and pitching
moment.

For a fixed control volume

fﬁ’ (00) +ndA (I11.2a)
A

f(? X ¥) { q)-nda (111.2b)
A

i

3
k.

T x

-+
i



TR 186 Page A3-2

where the integrals extend over the throat area and a suitably defined noz-
zle exit area. Care must be exercised in using Equations (III.2) since small
errors in mass flow can produce large errors in net thrust, T1ift and pitching
moment,

By straightforward algebraic manipulation and use of the Equation of State and
the definition of the Tocal sound speed Equations (III.2) may be reduced to
the following:

(YpMzsin(es-e) cosg + (p-p_) sinas)
T, = ' n - dydz
X sineg
Aéxif '
(III.3a)
(vazsin(e -8) cos8 + (p=p_) sins )
) 2 ; = 2 dydz
sine,
‘Athroat
(YpMzsin(es-e) sing + (p-p_) cosas)
L, = 7 dydz
"y - sineg
Aexit
(II1.3b)
(przsin(a -8) sins + (p-p ) cose_)
- > =2 2. dydz
s$ing
: A 3
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. (YpMzsin(es-e) coss + (p-p_) sines)

STHSS

)

5

o (YpMzsin(es-a) cosé + (p-p_) sine
- ydydz

51n9$

J
Athroat
(I11.3c)

(pr?sin(Bs-e) sing + (p-p_) cosas)
- xdydz

sines
Aexit
. [ (YpMzsin(es-e) sins + (p-pm) coses)
) siné xdydz
J S
A
throat

where B is the local inclination of the throat or exit area and z is the

lateral extent of the nozzle. The algebraic differences between Equations {I11.2)
and (III.3) represent the integrated force and moment contributions of the side-
walls/and or fences. If no fences are present the momentum balance is carried
out at the cowl exit station but the pressure integrations are still computed

over the full vehicle and cowl surfaces. '
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