719 research outputs found

    Extensions of Effective Medium Theory of Transport in Disordered Systems

    Get PDF
    Effective medium theory of transport in disordered systems, whose basis is the replacement of spatial disorder by temporal memory, is extended in several practical directions. Restricting attention to a 1-dimensional system with bond disorder for specificity, a transformation procedure is developed to deduce, from given distribution functions characterizing the system disorder, explicit expressions for the memory functions. It is shown how to use the memory functions in the Lapace domain forms in which they first appear, and in the time domain forms which are obtained via numerical inversion algorithms, to address time evolution of the system beyond the asymptotic domain of large times normally treated. An analytic but approximate procedure is provided to obtain the memories, in addition to the inversion algorithm. Good agreement of effective medium theory predictions with numerically computed exact results is found for all time ranges for the distributions used except near the percolation limit as expected. The use of ensemble averages is studied for normal as well as correlation observables. The effect of size on effective mediumtheory is explored and it is shown that, even in the asymptotic limit, finite size corrections develop to the well known harmonic mean prescription for finding the effective rate. A percolation threshold is shown to arise even in 1-d for finite (but not infinite) systems at a concentration of broken bonds related to the system size. Spatially long range transfer rates are shown to emerge naturally as a consequence of the replacement of spatial disorder by temporal memories, in spite of the fact that the original rates possess nearest neighbor character. Pausing time distributions in continuous time random walks corresponding to the effective medium memories are calculated.Comment: 15 pages, 11 figure

    Lagrange formulation of the symmetric teleparallel gravity

    Full text link
    We develop a symmetric teleparallel gravity model in a space-time with only the non-metricity is nonzero, in terms of a Lagrangian quadratic in the non-metricity tensor. We present a detailed discussion of the variations that may be used for any gravitational formulation. We seek Schwarzschild-type solutions because of its observational significance and obtain a class of solutions that includes Schwarzschild-type, Schwarzschild-de Sitter-type and Reissner-Nordstr\"{o}m-type solutions for certain values of the parameters. We also discuss the physical relevance of these solutions.Comment: Corrected typos, Accepted for publication in IJMP-

    Symmetric Teleparallel Gravity: Some exact solutions and spinor couplings

    Full text link
    In this paper we elaborate on the symmetric teleparallel gravity (STPG) written in a non-Riemannian spacetime with nonzero nonmetricity, but zero torsion and zero curvature. Firstly we give a prescription for obtaining the nonmetricity from the metric in a peculiar gauge. Then we state that under a novel prescription of parallel transportation of a tangent vector in this non-Riemannian geometry the autoparallel curves coincides with those of the Riemannian spacetimes. Subsequently we represent the symmetric teleparallel theory of gravity by the most general quadratic and parity conserving lagrangian with lagrange multipliers for vanishing torsion and curvature. We show that our lagrangian is equivalent to the Einstein-Hilbert lagrangian for certain values of coupling coefficients. Thus we arrive at calculating the field equations via independent variations. Then we obtain in turn conformal, spherically symmetric static, cosmological and pp-wave solutions exactly. Finally we discuss a minimal coupling of a spin-1/2 field to STPG.Comment: Accepted for publication in the International Journal of Modern Physics

    Effects of disorder in location and size of fence barriers on molecular motion in cell membranes

    Full text link
    The effect of disorder in the energetic heights and in the physical locations of fence barriers encountered by transmembrane molecules such as proteins and lipids in their motion in cell membranes is studied theoretically. The investigation takes as its starting point a recent analysis of a periodic system with constant distances between barriers and constant values of barrier heights, and employs effective medium theory to treat the disorder. The calculations make possible, in principle, the extraction of confinement parameters such as mean compartment sizes and mean intercompartmental transition rates from experimentally reported published observations. The analysis should be helpful both as an unusual application of effective medium theory and as an investigation of observed molecular movements in cell membranes.Comment: 9 pages, 5 figure

    Fault Models for Quantum Mechanical Switching Networks

    Full text link
    The difference between faults and errors is that, unlike faults, errors can be corrected using control codes. In classical test and verification one develops a test set separating a correct circuit from a circuit containing any considered fault. Classical faults are modelled at the logical level by fault models that act on classical states. The stuck fault model, thought of as a lead connected to a power rail or to a ground, is most typically considered. A classical test set complete for the stuck fault model propagates both binary basis states, 0 and 1, through all nodes in a network and is known to detect many physical faults. A classical test set complete for the stuck fault model allows all circuit nodes to be completely tested and verifies the function of many gates. It is natural to ask if one may adapt any of the known classical methods to test quantum circuits. Of course, classical fault models do not capture all the logical failures found in quantum circuits. The first obstacle faced when using methods from classical test is developing a set of realistic quantum-logical fault models. Developing fault models to abstract the test problem away from the device level motivated our study. Several results are established. First, we describe typical modes of failure present in the physical design of quantum circuits. From this we develop fault models for quantum binary circuits that enable testing at the logical level. The application of these fault models is shown by adapting the classical test set generation technique known as constructing a fault table to generate quantum test sets. A test set developed using this method is shown to detect each of the considered faults.Comment: (almost) Forgotten rewrite from 200

    PENGENALAN SUMBERDAYA MOLUSKA DAN EKOSISTEM LAMUN SERTA PENGENALAN MIKROPLASTIK DAN DAMPAKNYA BAGI LINGKUNGAN PESISIR BAGI SISWA SISWI SDN NEGERI LAMA KECAMATAN TELUK BAGUALA KOTA AMBON

    Get PDF
    Teluk Ambon dalam dengan tingkat pemanfaatan sumberdaya dan aktivitas kegiatan di laut yang tinggi mengakibatkan teluk Ambon banyak mendapat tekanan. Sumberdaya moluksa dan lamun merupakan sumberdaya yang ada di pesisir teluk Ambon. Isu mengenai polusi lautan oleh partikel mikroplastik telah membuka mata banyak orang tentang potensi bahaya yang mengincar biota laut dan manusia akibat pembuangan  sampah plastik ke laut secara sembarangan. Metode yang digunakan dalam kegiatan penyuluhan ini yaitu metode tahapan pendidikan, yaitu metode yang dilakukan melalui penyampaian materi melalui metode penyuluhan. Hasil dari pengabdian kepada masyarakat  (PKM) ini adalah Pengenalan sumberdaya moluska dan ekosistem lamun serta mengenal mikroplastik dan dampak bagi lingkungan pesisi
    corecore