27 research outputs found

    Molecular docking studies towards development of novel Gly-Phe analogs for potential inhibition of Cathepsin C (dipeptidyl peptidase I)

    Get PDF
    Cathepsin C is a cysteine protease required for activation of various pro-inflammatory serine proteases and, essentially, is of interest as a therapeutic target. Cathepsin C coordinate system was employed as a model to study the interaction of some already available inhibitors of Cathepsin C. Compounds containing Gly-Phe fragment with functional groups at its ends were designed by knowledge based approach. Using AutoDock and Discovery Studio Client 3.1 software packages, binding energy of different conformations and ten scoring functions (LigScore1, LigScore2, PLP1, PLP2, JAIN, PMF, PMF04, LUDI_1, LUDI_2 and LUDI_3) were calculated for newly designed compounds. These docking studies revealed favorable energy scores which also helps to understand interaction of ligands with enzyme

    Computer-aided design of Organophosphorus inhibitors of Urease

    Get PDF
    Based on the structure of the most potential inhibitor diamidophosphate, various novel groups of inhibitors were developed by knowledge-based design approach with covalent carbon-phosphorus or carbon-phosphorus-carbon bond to improve hydrolytic stability to inhibit the microbial ureases. Designed compounds were evaluated with 10 (LigScore1, LigScore2, PLP1, PLP2, JAIN, PMF, PMF04, LUDI_1, LUDI_2 and LUDI_3) different scoring functions implemented in Discovery Studio and conformation analysis by AutoDock package

    Self-derived peptides from the SARS-CoV-2 spike glycoprotein disrupting shaping and stability of the homotrimer unit

    Get PDF
    The structural spike (S) protein from the SARS-CoV-2 β-coronavirus is shown to make different pre- and post-fusion conformations within its homotrimer unit. To support the ongoing novel vaccine design and development strategies, we report the structure-based design approach to develop self-derived S peptides. A dataset of crucial regions from the S protein were transformed into linear motifs that could act as the blockers or stabilizers for the S protein homotrimer unit. Among these distinct S peptides, the pep02 (537-QQFGRDIAD-545) and pep07 (821-RDLICAQKFNGLTVLPPLLTDE-842) were found making stable folded binding with the S protein (550–750 and 950–1050 regions). Upon inserting SARS-CoV-2 S variants in the peptide destabilized the complexed S protein structure, resulting an allosteric effect in different functional regions of the protein. Particularly, the molecular dynamics revealed that A544D mutation in the pep02 peptide induced instability for the complexed S protein, whereas the N943K variant from pep09 exhibited an opposite behavior. An increased protein-peptide binding affinity and the stable structural folding were observed in mutated systems, compared to that of the wild type systems. The presence of mutation has induced an “up” active conformation of the spike (RBD) domain, responsible for interacting the host cell receptor. Among the lower affinity peptide datasets (e.g., pep01), the S1 and S2 subunit in the protein formed an “open” conformation, whereas with higher affinity peptides (e.g., pep07) these domains gained a “closed” conformation. These findings propose that our designed self-derived S peptides could replace a single S protein monomer, blocking the homotrimer formation or inducing stability

    Recognition dynamics of cancer mutations on the ERp57-Tapasin interface

    Get PDF
    Down regulation of the major histocompatibility class (MHC) I pathway plays an important role in tumour development, and can be achieved by suppression of HLA expression or mutations in the MHC peptide-binding pocket. The peptide-loading complex (PLC) loads peptides on the MHC-I molecule in a dynamic multi-step assembly process. The effects of cancer variants on ERp57 and tapasin components from the MHC-I pathway is less known, and they could have an impact on antigen presentation. Applying computational approaches, we analysed whether the ERp57-tapasin binding might be altered by missense mutations. The variants H408R(ERp57) and P96L, D100A, G183R(tapasin) at the protein–protein interface improved protein stability (ΔΔG) during the initial screen of 14 different variants. The H408R(ERp57) and P96L(tapasin) variants, located close to disulphide bonds, were further studied by molecular dynamics (MD). Identifying intramolecular a-a’ domain interactions, MD revealed open and closed conformations of ERp57 in the presence and absence of tapasin. In wild-type and mutant ERp57-tapasin complexes, residues Val97, Ser98, Tyr100, Trp405, Gly407(ERp57) and Asn94, Cys95, Arg97, Asp100(tapasin) formed common H-bond interactions. Moreover, comparing the H-bond networks for P96L and H408R with each other, suggests that P96L(tapasin) improved ERp57-tapasin binding more than the H408R(ERp57) mutant. During MD, the C-terminus domain (that binds MHC-I) in tapasin from the ERp57(H408R)-tapasin complex moved away from the PLC, whereas in the ERp57-tapasin(P96L) system was oppositely displaced. These findings can have implications for the function of PLC and, ultimately, for the presentation of MHC-I peptide complex on the tumour cell surface

    Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations

    Get PDF
    The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8–10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport

    The Elephant Evolved p53 Isoforms that Escape MDM2-Mediated Repression and Cancer

    Get PDF
    The p53 tumor suppressor is a transcription factor with roles in cell development, apoptosis, oncogenesis, aging, and homeostasis in response to stresses and infections. p53 is tightly regulated by the MDM2 E3 ubiquitin ligase. The p53-MDM2 pathway has coevolved, with MDM2 remaining largely conserved, whereas the TP53 gene morphed into various isoforms. Studies on prevertebrate ancestral homologs revealed the transition from an environmentally induced mechanism activating p53 to a tightly regulated system involving cell signaling. The evolution of this mechanism depends on structural changes in the interacting protein motifs. Elephants such as Loxodonta africana constitute ideal models to investigate this coevolution as they are large and long-living as well as having 20 copies of TP53 isoformic sequences expressing a variety of BOX-I MDM2-binding motifs. Collectively, these isoforms would enhance sensitivity to cellular stresses, such as DNA damage, presumably accounting for strong cancer defenses and other adaptations favoring healthy aging. Here we investigate the molecular evolution of the p53-MDM2 system by combining in silico modeling and in vitro assays to explore structural and functional aspects of p53 isoforms retaining the MDM2 interaction, whereas forming distinct pools of cell signaling. The methodology used demonstrates, for the first time that in silico docking simulations can be used to explore functional aspects of elephant p53 isoforms. Our observations elucidate structural and mechanistic aspects of p53 regulation, facilitate understanding of complex cell signaling, and suggest testable hypotheses of p53 evolution referencing Peto's Paradox

    Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site

    Get PDF
    An important stage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) life cycle is the binding of the spike (S) protein to the angiotensin converting enzyme-2 (ACE2) host cell receptor. Therefore, to explore conserved features in spike protein dynamics and to identify potentially novel regions for drugging, we measured spike protein variability derived from 791 viral genomes and studied its properties by molecular dynamics (MD) simulation. The findings indicated that S2 subunit (heptad-repeat 1 (HR1), central helix (CH), and connector domain (CD) domains) showed low variability, low fluctuations in MD, and displayed a trimer cavity. By contrast, the receptor binding domain (RBD) domain, which is typically targeted in drug discovery programs, exhibits more sequence variability and flexibility. Interpretations from MD simulations suggest that the monomer form of spike protein is in constant motion showing transitions between an “up” and “down” state. In addition, the trimer cavity may function as a “bouncing spring” that may facilitate the homotrimer spike protein interactions with the ACE2 receptor. The feasibility of the trimer cavity as a potential drug target was examined by structure based virtual screening. Several hits were identified that have already been validated or suggested to inhibit the SARS-CoV-2 virus in published cell models. In particular, the data suggest an action mechanism for molecules including Chitosan and macrolides such as the mTOR (mammalian target of Rapamycin) pathway inhibitor Rapamycin. These findings identify a novel small molecule binding-site formed by the spike protein oligomer, that might assist in future drug discovery programs aimed at targeting the coronavirus (CoV) family of viruses

    Identification of novel interferon responsive protein partners of human leukocyte antigen A (HLA-A) using cross-linking mass spectrometry (CLMS) approach

    Get PDF
    The interferon signalling system elicits a robust cytokine response against a wide range of environmental pathogenic and internal pathological signals, leading to induction of a subset of interferon-induced proteins. We applied DSS (disuccinimidyl suberate) mediated cross-linking mass spectrometry (CLMS) to capture novel protein–protein interactions within the realm of interferon induced proteins. In addition to the expected interferon-induced proteins, we identified novel inter- and intra-molecular cross-linked adducts for the canonical interferon induced proteins, such as MX1, USP18, OAS3, and STAT1. We focused on orthogonal validation of a cohort of novel interferon-induced protein networks formed by the HLA-A protein (H2BFS-HLA-A-HMGA1) using co-immunoprecipitation assay, and further investigated them by molecular dynamics simulation. Conformational dynamics of the simulated protein complexes revealed several interaction sites that mirrored the interactions identified in the CLMS findings. Together, we showcase a proof-of-principle CLMS study to identify novel interferon-induced signaling complexes and anticipate broader use of CLMS to identify novel protein interaction dynamics within the tumour microenvironment
    corecore