62 research outputs found

    ALISSA: an automated live-cell imaging system for signal transduction analyses

    Get PDF
    Probe photobleaching and a specimen’s sensitivity to phototoxicity severely limit the number of possible excitation cycles in time-lapse fluorescent microscopy experiments. Consequently, when a study of cellular processes requires measurements over hours or days, temporal resolution is limited, and spontaneous or rapid events may be missed, thus limiting conclusions about transduction events. We have developed ALISSA, a design framework and reference implementation for an automated live-cell imaging system for signal transduction analysis. It allows an adaptation of image modalities and laser resources tailored to the biological process, and thereby extends temporal resolution from minutes to seconds. The system employs online image analysis to detect cellular events that are then used to exercise microscope control. It consists of a reusable image analysis software for cell segmentation, tracking, and time series extraction, and a measurement-specific process control software that can be easily adapted to various biological settings. We have applied the ALISSA framework to the analysis of apoptosis as a demonstration case for slow onset and rapid execution signaling. The demonstration provides a clear proof-of-concept for ALISSA, and offers guidelines for its application in a broad spectrum of signal transduction studies

    Control structure and limitations of biochemical networks

    Get PDF
    Abstract-Biochemical networks typically exhibit intricate topologies that hinder their analysis with control-theoretic tools. In this work we present a systematic methodology for the identification of the control structure of a reaction network. The method is based on a bandwidth reduction technique applied to the incidence matrix of the network's graph. In addition, in the case of mass-action and stable networks we show that it is possible to identify linear algebraic dependencies between the time-domain integrals of some species' concentrations. We consider the extrinsic apoptosis pathway and an activationinhibition mechanism to illustrate the application of our results

    Control structure and limitations of biochemical networks

    Get PDF
    Abstract-Biochemical networks typically exhibit intricate topologies that hinder their analysis with control-theoretic tools. In this work we present a systematic methodology for the identification of the control structure of a reaction network. The method is based on a bandwidth reduction technique applied to the incidence matrix of the network's graph. In addition, in the case of mass-action and stable networks we show that it is possible to identify linear algebraic dependencies between the time-domain integrals of some species' concentrations. We consider the extrinsic apoptosis pathway and an activationinhibition mechanism to illustrate the application of our results

    Gene expression patterns in four brain areas associate with quantitative measure of estrous behavior in dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decline noticed in several fertility traits of dairy cattle over the past few decades is of major concern. Understanding of the genomic factors underlying fertility, which could have potential applications to improve fertility, is very limited. Here, we aimed to identify and study those genes that associated with a key fertility trait namely estrous behavior, among genes expressed in four bovine brain areas (hippocampus, amygdala, dorsal hypothalamus and ventral hypothalamus), either at the start of estrous cycle, or at mid cycle, or regardless of the phase of cycle.</p> <p>Results</p> <p>An average heat score was calculated for each of 28 primiparous cows in which estrous behavior was recorded for at least two consecutive estrous cycles starting from 30 days post-partum. Gene expression was then measured in brain tissue samples collected from these cows, 14 of which were sacrificed at the start of estrus and 14 around mid cycle. For each brain area, gene expression was modeled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model. Genes whose expression patterns showed significant linear or quadratic relationships with heat scores were identified. These included genes expected to be related to estrous behavior as they influence states like socio-sexual behavior, anxiety, stress and feeding motivation (<it>OXT, AVP, POMC, MCHR1</it>), but also genes whose association with estrous behavior is novel and warrants further investigation.</p> <p>Conclusions</p> <p>Several genes were identified whose expression levels in the bovine brain associated with the level of expression of estrous behavior. The genes <it>OXT </it>and <it>AVP </it>play major roles in regulating estrous behavior in dairy cows. Genes related to neurotransmission and neuronal plasticity are also involved in estrous regulation, with several genes and processes expressed in mid-cycle probably contributing to proper expression of estrous behavior in the next estrus. Studying these genes and the processes they control improves our understanding of the genomic regulation of estrous behavior expression.</p

    Neuropeptide Signaling Differentially Affects Phase Maintenance and Rhythm Generation in SCN and Extra-SCN Circadian Oscillators

    Get PDF
    Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC2, play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC2 receptors (Vipr2−/−) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC2 receptor expression; both VPAC2 receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC2 receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2−/− mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC2 receptor. Vipr2−/− SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2−/− Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2−/− cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2−/− mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2−/− animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species

    Leptin signaling and circuits in puberty and fertility

    Full text link
    corecore