3 research outputs found

    Air pollution prediction with multi-modal data and deep neural networks

    Get PDF
    Air pollution is becoming a rising and serious environmental problem, especially in urban areas affected by an increasing migration rate. The large availability of sensor data enables the adoption of analytical tools to provide decision support capabilities. Employing sensors facilitates air pollution monitoring, but the lack of predictive capability limits such systems’ potential in practical scenarios. On the other hand, forecasting methods offer the opportunity to predict the future pollution in specific areas, potentially suggesting useful preventive measures. To date, many works tackled the problem of air pollution forecasting, most of which are based on sequence models. These models are trained with raw pollution data and are subsequently utilized to make predictions. This paper proposes a novel approach evaluating four different architectures that utilize camera images to estimate the air pollution in those areas. These images are further enhanced with weather data to boost the classification accuracy. The proposed approach exploits generative adversarial networks combined with data augmentation techniques to mitigate the class imbalance problem. The experiments show that the proposed method achieves robust accuracy of up to 0.88, which is comparable to sequence models and conventional models that utilize air pollution data. This is a remarkable result considering that the historic air pollution data is directly related to the output—future air pollution data, whereas the proposed architecture uses camera images to recognize the air pollution—which is an inherently much more difficult problem

    Literature on applied machine learning in metagenomic classification: A scoping review

    Get PDF
    Applied machine learning in bioinformatics is growing as computer science slowly invades all research spheres. With the arrival of modern next-generation DNA sequencing algorithms, metagenomics is becoming an increasingly interesting research field as it finds countless practical applications exploiting the vast amounts of generated data. This study aims to scope the scientific literature in the field of metagenomic classification in the time interval 2008–2019 and provide an evolutionary timeline of data processing and machine learning in this field. This study follows the scoping review methodology and PRISMA guidelines to identify and process the available literature. Natural Language Processing (NLP) is deployed to ensure efficient and exhaustive search of the literary corpus of three large digital libraries: IEEE, PubMed, and Springer. The search is based on keywords and properties looked up using the digital libraries’ search engines. The scoping review results reveal an increasing number of research papers related to metagenomic classification over the past decade. The research is mainly focused on metagenomic classifiers, identifying scope specific metrics for model evaluation, data set sanitization, and dimensionality reduction. Out of all of these subproblems, data preprocessing is the least researched with considerable potential for improvement

    Protein Classification Using Decision Trees With Bottom‐up Classification Approach

    No full text
    corecore