18 research outputs found

    Personal reflections on the neuropathology of kuru

    Get PDF

    NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury

    Get PDF
    BACKGROUND: A major class of axon growth-repulsive molecules associated with CNS scar tissue is the family of chondroitin sulphate proteoglycans (CSPGs). Experimental spinal cord injury (SCI) has demonstrated rapid re-expression of CSPGs at and around the lesion site. The pharmacological digestion of CSPGs in such lesion models results in substantially enhanced axonal regeneration and a significant functional recovery. The potential therapeutic relevance of interfering with CSPG expression or function following experimental injuries seems clear, however, the spatio-temporal pattern of expression of individual members of the CSPG family following human spinal cord injury is only poorly defined. In the present correlative investigation, the expression pattern of CSPG family members NG2, neurocan, versican and phosphacan was studied in the human spinal cord. METHODS: An immunohistochemical investigation in post mortem samples of control and lesioned human spinal cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries and presented lesions of the maceration type. RESULTS: In sections from control spinal cord, NG2 immunoreactivity was restricted to stellate-shaped cells corresponding to oligodendrocyte precursor cells. The distribution patterns of phosphacan, neurocan and versican in control human spinal cord parenchyma were similar, with a fine reticular pattern being observed in white matter (but also located in gray matter for phosphacan). Neurocan staining was also associated with blood vessel walls. Furthermore, phosphacan, neurocan and versican were present in the myelin sheaths of ventral and dorsal nerve roots axons. After human SCI, NG2 and phosphacan were both detected in the evolving astroglial scar. Neurocan and versican were detected exclusively in the lesion epicentre, being associated with infiltrating Schwann cells in the myelin sheaths of invading peripheral nerve fibres from lesioned dorsal roots. CONCLUSION: NG2 and phosphacan were both present in the evolving astroglial scar and, therefore, might play an important role in the blockade of successful CNS regeneration. Neurocan and versican, however, were located at the lesion epicentre, associated with Schwann cell myelin on regenerating peripheral nerve fibres, a distribution that was unlikely to contribute to failed CNS axon regeneration. The present data points to the importance of such correlative investigations for demonstrating the clinical relevance of experimental data

    A brief history of muscular dystrophy research: A personal perspective

    No full text
    The field of myology has undergone remarkable changes. From the period of early clinical descriptions and clinical classifications, new knowledge of these disorders has come from the developments of histopathology, enzyme histochemistry and later, immunocytochemistry and electron microscopy. These techniques have enhanced the understanding of the pathophysiology of myopathies at the cellular level. The parallel evolution of molecular genetics has taken the science further not only by way of understanding and accuracy of diagnosis, but has opened up exciting possibilities of modulation of these chronic debilitating diseases. This review gives a personal perspective of the developments in the field of myology

    Binary masses of the earth crust and biosphere

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹ обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ создания ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ матСматичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ гСологичСских процСссов. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… процСссов ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ матСматичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ€Π°Π²Π½Ρ‹Ρ… Π°Ρ‚ΠΎΠΌΠ½Ρ‹Ρ… масс. ΠœΠ΅Ρ‚ΠΎΠ΄ исслСдования: Π»ΠΎΠ³ΠΈΠΊΠΎ-матСматичСский Π°Π½Π°Π»ΠΈΠ· срСдних содСрТаний химичСских элСмСнтов Π² Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡ€Π΅ ΠΈ гидросфСрС ΠΈ молСкулярных масс ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² фотосинтСза. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π°Π½Π°Π»ΠΈΠ·Π° срСдних содСрТаний химичСских элСмСнтов Π² Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡ€Π΅ ΠΈ гидросфСрС обосновываСтся сущСствованиС Π±ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… масс Β«Π³Π°Π·Ρ‹ - химичСскиС элСмСнты». Π’Π°ΠΊΠΈΠ΅ массы прСдлагаСтся Π½Π°Π·Π²Π°Ρ‚ΡŒ массами ЀСрсмана ΠΈΠ»ΠΈ F-массами. F-массы проявлСны Π² составС зСмная -окСаничСская ΠΊΠΎΡ€Π°, ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ зСмная ΠΊΠΎΡ€Π° - гидросфСра, ΠΏΠΎΡ‡Π²Π΅Π½Π½Ρ‹ΠΉ слой - атмосфСра ΠΈ Π΄Ρ€. F-массы Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡ€Ρ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ собой ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Π΅ диспСрсныС срСды, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… распрСдСлСны диспСрсныС Ρ„Π°Π·Ρ‹. БостояниС вСщСства с Ρ‚Π°ΠΊΠΈΠΌΠΈ характСристиками прСдлагаСтся Π½Π°Π·Π²Π°Ρ‚ΡŒ F-срСдой. Как Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½ΡƒΡŽ Π±ΠΈΠ½Π°Ρ€Π½ΡƒΡŽ массу прСдлагаСтся Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠœΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΎΠΊΠ΅Π°Π½ ΠΈ Π²Π΅Ρ€Ρ…Π½ΡŽΡŽ Ρ‡Π°ΡΡ‚ΡŒ литосфСры, ΠΎΡ‚ срСднСй гипсомСтричСской ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΊΠΈ Π΄Π½Π° ΠΌΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° ΠΈ Π²Ρ‹ΡˆΠ΅, Π΄ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ ΠΎΡ‚ повСрхности. ΠšΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Ρ‹ ΠΈ ΠœΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΎΠΊΠ΅Π°Π½ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ гипсомСтричСских ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΎΠΊ Β«Π΄Π½ΠΎ - ΡƒΡ€Π΅Π· Π²ΠΎΠ΄Ρ‹ ΠΎΠΊΠ΅Π°Π½Π°Β» ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π±ΠΈΠ½Π°Ρ€Π½ΡƒΡŽ массу, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π΄Π΅Π»Π° Π½Π° ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Ρ… ΠΌΡ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ провСсти Π½Π° ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΊΠ΅ 312 ΠΌ Π½ΠΈΠΆΠ΅ уровня ΠœΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Π½Π° ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Ρ… эта ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ-окСаничСская ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Ρ‹Ρ… масс располагаСтся ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π΅ 1187 ΠΌ для участков со срСднСй гипсомСтричСской ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΊΠΎΠΉ повСрхности ΠΊΠΎΠ½Ρ‚ΠΈΠ½Π΅Π½Ρ‚ΠΎΠ² 875 ΠΌ. Π­Ρ‚ΠΎΠΉ Π³Π»ΡƒΠ±ΠΈΠ½Π΅ соотвСтствуСт ниТняя Π³Ρ€Π°Π½ΠΈΡ†Π° формирования Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… приповСрхностных мСстороТдСний (Π΄ΠΎ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ 1-1,5 ΠΊΠΌ) ΠΈ приповСрхностных со срСднСглубинными (Π³Π»ΡƒΠ±ΠΈΠ½Π° ΠΎΡ‚ 0,5 Π΄ΠΎ 1-1,5 ΠΊΠΌ) ΠΈΠ½Ρ‚Ρ€ΡƒΠ·ΠΈΠ²Π½Ρ‹Ρ… массивов. ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ массы ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΆΠ΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ фотосинтСза. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… масс ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ сущСствованиС диспСрсных F-срСд. БущСствованиС F-масс, вСроятно, обусловлСно нСизвСстным Ρ€Π°Π½Π΅Π΅ свойством ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ связанныС Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ Ρ€Π°Π²Π½Ρ‹Π΅ массы с Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ. ВыявлСниС F-масс стало Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ послС создания матСматичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π°Π²Π½Ρ‹Ρ… Π°Ρ‚ΠΎΠΌΠ½Ρ‹Ρ… масс. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ F-систСм прСдлагаСтся ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ с использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ Agemarker, которая основана Π½Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π°Π²Π½Ρ‹Ρ… Π°Ρ‚ΠΎΠΌΠ½Ρ‹Ρ… масс ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ исходный ΠΊΠΎΠ΄.The relevance of the work is caused by the need to develop and verify mathematical models of geological processes. The main aim of the study is to define natural processes and objects that correspond to mathematical models of equal atomic masses. The methods used in the study is logico-mathematical analysis of average contents of chemical elements in the earth's crust and hydrosphere and molecular masses of photosynthetic products. The results. The analysis of average contents of chemical elements in the earth's crust and hydrosphere substantiates the existence of binary masses Β«gases - chemical elementsΒ». Such masses are proposed to be called Fersman's, or F-masses. F-masses occur in the composition of continental-oceanic crust, continental crust - hydrosphere, soil layer - atmosphere, etc. as mobile dispersed medias with distributed dispersed phases. The state of matter possessing such characteristics is proposed to be called an F-medium. The World Ocean and the upper part of the lithosphere (from the average level of the ocean floor and up to a certain depth from the surface) is considered to be the global binary mass. Binary mass is formed by continents and the World Ocean in the interval of hypsometric marks Β«the ocean floor - edge of the ocean waterΒ»; we must hold the corresponding interface on the continents at 312 m below the level of the World Ocean. It is assumed that this continental-oceanic surface of equal masses is located on the continents approximately at a depth of 1187 m for areas with average hypsometric elevation of 875 m. This depth corresponds to the lower boundary of the formation of near-surface deposits (to the depth of 1-1,5 km) and near-surface deposits with medium-deep (depths from 0,5 to 1-1,5 km) intrusive massifs. F-masses may also be formed as a result of photosynthesis. The formation of such masses presupposes the existence of dispersed medium. The existence of F-masses is probably caused by the previously unknown property of matter to create mutually connected equal masses with gravity and inertial components. The study of F-systems is proposed to be carried out using the Agemarker open source program. The program is based on algorithms of models of equal atomic masses

    Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury"</p><p>http://www.biomedcentral.com/1471-2377/7/17</p><p>BMC Neurology 2007;7():17-17.</p><p>Published online 26 Jun 2007</p><p>PMCID:PMC1914362.</p><p></p>ctions stained with the MMP-1 antibody. Two days after injury, motoneurons in the perilesional area retained their cytoplasmic MMP-1 immunoreactivity. Four days after SCI, MMP-1 immunohistochemistry at the site of injury displayed round to oval cells (arrowheads). By 8 days, the lesion site was filled with a high number of MMP-1 immunoreactive cells. Again, more round to oval shaped cells can be seen. At 11 days after SCI, the amount of MMP-1 stained cells was dramatically decreased and only single round cells were detectable. 4 months after injury, large MMP-1 positive cells could be seen around the site of injury with the morphology of activated astrocytes. 8 months after SCI, identifiable neurons around the lesion site demonstrated a staining pattern similar to that of control cases

    Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury-4

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury"</p><p>http://www.biomedcentral.com/1471-2377/7/17</p><p>BMC Neurology 2007;7():17-17.</p><p>Published online 26 Jun 2007</p><p>PMCID:PMC1914362.</p><p></p>ctions.8 days after injury. Double immunofluorescence for CD68 (red) and MMP-1 (green). Almost all microglia/macrophages were MMP-1 positive at the lesion site. 8 months after injury. Double immunofluorescence for GFAP (green) and MMP-1 (red). Large, activated, strongly GFAP-positive astrocytes expressing MMP-1 were observed in the glial scar tissue. 11 days after trauma, MMP-2 immunoreactivity (green) was expressed by CD68 positive microglia/macrophages (red) at the lesion site. 2 days after injury, CD68 positive microglia/macrophages (red) were MMP-9 immunoreactive (green) at the lesion epicentre. 24 days after trauma, dense packing of large, CD68 positive macrophages (red) which also stained for MMP-9 (green) was visible at the lesion epicentre. In the same case, double immunofluorescence with CD68 (red) and MMP-12 (green) showed a nearly identical distribution. Eight months after injury, activated GFAP-positive astrocytes (green) displayed TIMP-3 immunoreactivity (red) in the perilesional scar

    Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury-6

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury"</p><p>http://www.biomedcentral.com/1471-2377/7/17</p><p>BMC Neurology 2007;7():17-17.</p><p>Published online 26 Jun 2007</p><p>PMCID:PMC1914362.</p><p></p>ctions. In a section from patients who died 2 days after SCI, immunohistochemistry for TIMP-1 demonstrated occasional cells (arrow) with a round to oval morphology at the lesion site. Immunohistochemistry for TIMP-2 showed an identical staining pattern, with single immunopositive rounded cells (arrow). At 4 days post injury, identifiable motoneurons demonstrated a cytoplasmic TIMP-2 immunoreactivity. 8 days after SCI, only single neurons (arrow) were stained for TIMP-2 and many motoneurons were unstained (arrowheads). 8 days after trauma, immunohistochemistry for TIMP-3 demonstrated cytoplasmic staining in most identifiable motoneurons close to the site of injury. In the same case, single TIMP-3 immunoreactive round cells could be seen (arrow). Four months after SCI, gray matter of the perilesional area showed mostly TIMP-3 immunoreactive motoneurons. Eight months after injury, multiple activated cells (arrows, presumably astrocytes) were immunopositive for TIMP-3 in areas directly surrounding the dense glial scar
    corecore