16 research outputs found

    Ultrashort PW laser pulse interaction with target and ion acceleration

    No full text
    We present the experimental results on ion acceleration by petawatt femtosecond laser solid interaction and explore strategies to enhance ion energy. The irradiation of micrometer thick (0.2-6.0 mu m) Al foils with a virtually unexplored intensity regime (8 x 10(19) W/cm(2) - 1 x 10(21) W/cm(2)) resulting in ion acceleration along the rear and the front surface target normal direction is investigated. The maximum energy of protons and carbon ions, obtained at optimized laser intensity condition (by varying laser energy or focal spot size), exhibit a rapid intensity scaling as I-0.8 along the rear surface target normal direction and I-0.6 along the front surface target normal direction. It was found that proton energy scales much faster with laser energy rather than the laser focal spot size. Additionally, the ratio of maximum ion energy along the both directions is found to be constant for the broad range of target thickness and laser intensities. A proton flux is strongly dominated in the forward direction at relatively low laser intensities. Increasing the laser intensity results in the gradual increase in the backward proton flux and leads to almost equalization of ion flux in both directions in the entire energy range. These experimental findings may open new perspectives for application

    Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams.

    No full text
    Laser-driven proton and ion acceleration is an area of increasing research interest given the recent development of short pulse-high intensity lasers. Several groups have reported experiments to understand whether a laser-driven beam can be applied for radiobiological purposes and in each of these, the method to obtain dose and spectral analysis was slightly different. The difficulty with these studies is that the very large instantaneous dose rate is a challenge for commonly used dosimetry techniques, so that other more sophisticated procedures need to be explored. This paper aims to explain a method for obtaining the energetic spectrum and the dose of a laser-driven proton beam irradiating a cell dish used for radiobiology studies. The procedure includes the use of a magnet to have charge and energy separation of the laser-driven beam, Gafchromic films to have information on dose and partially on energy, and a Monte Carlo code to expand the measured data in order to obtain specific details of the proton spectrum on the cells. Two specific correction factors have to be calculated: one to take into account the variation of the dose response of the films as a function of the proton energy and the other to obtain the dose to the cell layer starting from the dose measured on the films. This method, particularly suited to irradiation delivered in a single laser shot, can be applied in any other radiobiological experiment performed with laser-driven proton beams, with the only condition that the initial proton spectrum has to be at least roughly known. The method was tested in an experiment conducted at Queen's University of Belfast using the TARANIS laser, where the mean energy of the protons crossing the cells was between 0.9 and 5 MeV, the instantaneous dose rate was estimated to be close to 10(9) Gy s(-1) and doses between 0.8 and 5 Gy were delivered to the cells in a single laser shot. The combination of the applied corrections modified the initial estimate of dose by up to 40%

    Cell irradiation experiment using laser driven protons at ultra high dose rate

    No full text
    The effect of proton irradiation of biological cells, on timescales orders of magnitude shorter than with conventional accelerators, has been investigated by employing the TARANIS laser at Queen's University. Multiple cell-spots with different doses and proton energies were irradiated at the same time in a single laser shot at dose rates exceeding 109 Gy/sec. The data show a clear dose-dependant lethal effect of laser-driven protons over V-79 cells. A comparison with the survival obtained with an X-Ray standard source has been done and the resulting relative biological effectiveness (RBE) is about 1.3 at 10%

    Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s

    No full text
    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen’s University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109 Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225kKVp X-ray source

    Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    No full text
    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source. © 2012 American Institute of Physics
    corecore