68 research outputs found

    Photon correlation studies of single GaN quantum dots

    Full text link
    We present measurements of the second-order coherence function on emission from single GaN quantum dots. In some cases a large degree of photon antibunching is observed, demonstrating isolation of a single quantum system. For a selected quantum dot, we study the dependence of photon antibunching on excitation power and temperature. Using pulsed excitation, we demonstrate an ultraviolet triggered single-photon source operating at a wavelength of 358 nm.Comment: 3 pages, 4 figure

    Tensile strain engineering of germanium micro-disks on free-standing SiO2 beams

    Get PDF
    Tensile strain is required to enhance light-emitting direct-gap recombinations in germanium (Ge), which is a promising group IV material for realizing a monolithic light source on Si. Ge micro-disks on free-standing SiO2 beams were fabricated using Ge-on-Insulator wafers for applying tensile strain to Ge in a structure compatible with an optical confinement. We have studied the nature of the strain by Raman spectroscopy in comparison with finite-element computer simulations. We show the impacts of the beam design on the corresponding strain value, orientation, and uniformity, which can be exploited for Ge light emission applications. It was found that the tensile strain values are larger if the length of the beam is smaller. We confirmed that both uniaxial and biaxial strain can be applied to Ge disks, and maximum strain values of 1.1 and 0.6% have been achieved, as confirmed by Raman spectroscopy. From the photoluminescence spectra of Ge micro-disks, we have also found a larger energy splitting between the light-hole and the heavy-hole bands in shorter beams, indicating the impact of tensile strain

    Tensile strain of germanium micro-disks on freestanding SiO2 beams

    No full text
    Tensile strain is crucial to expect the direct recombination in germanium (Ge), towards monolithic light sources on silicon (Si). Freestanding beams of Ge are known to produce strong tensile strain, however, it is not trivial to construct a cavity in a freestanding structure. Here, we fabricated Ge micro-disks on freestanding oxide beams, and observed Whispering-Gallery-Modes (WGM) by photoluminescence. The tensile strain was larger in shorter beams, which is consistent with simulations

    Mean-field Coherent Ising Machines with artificial Zeeman terms

    Full text link
    Coherent Ising Machine (CIM) is a network of optical parametric oscillators that solves combinatorial optimization problems by finding the ground state of an Ising Hamiltonian. In CIMs, a problem arises when attempting to realize the Zeeman term because of the mismatch in size between interaction and Zeeman terms due to the variable amplitude of the optical parametric oscillator pulses corresponding to spins. There have been three approaches proposed so far to address this problem for CIM, including the absolute mean amplitude method, the auxiliary spin method, and the chaotic amplitude control (CAC) method. This paper focuses on the efficient implementation of Zeeman terms within the mean-field CIM model, which is a physics-inspired heuristic solver without quantum noise. With the mean-field model, computation is easier than with more physically accurate models, which makes it suitable for implementation in FPGAs and large-scale simulations. Firstly, we examined the performance of the mean-field CIM model for realizing the Zeeman term with the CAC method, as well as their performance when compared to a more physically accurate model. Next, we compared the CAC method to other Zeeman term realization techniques on the mean-field model and a more physically accurate model. In both models, the CAC method outperformed the other methods while retaining similar performance.Comment: 8 pages, 4 figure

    Fatigue Life of Concrete under Varying Repeated Load

    Get PDF

    Experimental investigation of performance differences between Coherent Ising Machines and a quantum annealer

    Get PDF
    Physical annealing systems provide heuristic approaches to solving NP-hard Ising optimization problems. Here, we study the performance of two types of annealing machines--a commercially available quantum annealer built by D-Wave Systems, and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillator networks--on two classes of problems, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on regular graphs of degree 3. On denser problems, however, we observe an exponential penalty for the quantum annealer (expā”(āˆ’Ī±DWN2)\exp(-\alpha_\textrm{DW} N^2)) relative to CIMs (expā”(āˆ’Ī±CIMN)\exp(-\alpha_\textrm{CIM} N)) for fixed anneal times, on both the SK model and on 50%-edge-density MAX-CUT, where the coefficients Ī±CIM\alpha_\textrm{CIM} and Ī±DW\alpha_\textrm{DW} are problem-class-dependent. On instances with over 5050 vertices, a several-orders-of-magnitude time-to-solution difference exists between CIMs and the D-Wave annealer. An optimal-annealing-time analysis is also consistent with a significant projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the measurement-feedback facilitated all-to-all connectivity of the CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers.Comment: 12 pages, 5 figures, 1 table (main text); 14 pages, 12 figures, 2 tables (supplementary

    Scaling advantages of all-to-all connectivity in physical annealers: the Coherent Ising Machine vs. D-Wave 2000Q

    Get PDF
    Physical annealing systems provide a heuristic approach to solve NP-hard Ising optimization problems. It is believed that the connectivity between spins in such annealers significantly impacts the machine's computational effectiveness. In this paper we study the performance of two types of annealing machines that have very different connectivity -- a commercially available quantum annealer built by D-wave Systems, which has sparse connectivity, and coherent Ising machines based on optical parametric oscillator networks, which have all-to-all connectivity. We demonstrate an exponential (e^(āˆ’O(N^2))) penalty in performance for the D-wave quantum annealer relative to coherent Ising machines when solving Ising problems on dense graphs, which is attributable to the differences in internal connectivity between the machines. This leads to a several-orders-of-magnitude time-to-solution difference between coherent Ising machines and the D-wave system for problems with over 50 vertices. Our results provide strong experimental support to efforts to increase the connectivity of physical annealers

    Experimental investigation of performance differences between coherent Ising machines and a quantum annealer

    Get PDF
    Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here, we benchmark two types of annealing machinesā€”a quantum annealer built by D-Wave Systems and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillatorsā€”on two problem classes, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on cubic graphs. On denser problems, however, we observe an exponential penalty for the quantum annealer [exp(ā€“Ī±_(DW)N^2)] relative to CIMs [exp(ā€“Ī±_(CIM)N)] for fixed anneal times, both on the SK model and on 50% edge density MAX-CUT. This leads to a several orders of magnitude time-to-solution difference for instances with over 50 vertices. An optimalā€“annealing time analysis is also consistent with a substantial projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the fully-connected CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers
    • ā€¦
    corecore