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D-Wave embeddings and Jc optimization

Native clique embeddings (41) are used for all SK problems, MAX-CUT problems on graphs

with edge density 0.5, and MAX-CUT problems on varying-density graphs (Figs. 2C, 3B and

4A respectively in main text). The code to generate the embeddings is available on GitHub (61).

Once an embedding is chosen, the embedding parameter Jc (ferromagnetic coupling between

qubits in a chain) is tuned to maximize performance. In no cases does the optimal Jc depend on

the annealing time.

Fig. S1 shows that the optimal Jc scales roughly as N1/2 for SK problems and N3/2 for

MAX-CUT problems of edge density 0.5. In particular, the relations Jc = 1.1N1/2 (SK) and

Jc = 0.047N3/2 (MAX-CUT) were used in Figs. 2C, 3B.

For graphs with variable edge density, it was shown in Fig. 4B that the optimal Jc scales as d

for fixed N , with Jc = 0.5d = 9.5x for N = 20 shown in the figure (x = d/(N − 1) is the edge

density). Extrapolating this using the N3/2 relation above (which holds for constant x = 1
2
), we
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Fig. S1. D-Wave success probability for SK problems and MAX-CUT problems of edge
density 0.5 as a function of problem size N and embedding parameter Jc .
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Fig. S2. MAX-CUT on edge density of 0.5. Broken chains as a function of
problem size N and embedding parameter Jc

used Jc = 9.5(N/20)3/2x, which is very close to the Jc = 0.047N3/2 used for edge-density 0.5

graphs. The relation was also tested for N = 30 variable edge-density graphs and found to give

the optimal Jc.

Fig. 3A of the main text suggests that the success probability is maximized when the number

of broken chains is Nbr ≈ 0.7. Plotting Nbr as a function of N and Jc in fig. S2, we see that

Nbr ≈ 0.7 for a narrow range of Jc centered around the line Jc = 0.047N3/2. For a wide range

of N , this value of Jc also roughly maximizes the success probability (fig. S1).

The fact that dense MAX-CUT problems are optimally embedded when Nbr = O(1) is an

example of the general principle that Jc must neither be too strong nor too weak for a problem.

If Jc is too small so that Nbr � 1, the constraint is not enforced effectively and thus the

embedded problem can have a ground state that is different from the logical problem. Once

Nbr . 1, increasing Jc further will not improve the computation significantly because all of the

graphs with an 
.
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Fig. S3. Properties of heuristic embeddings for fixed-degree graphs. (A) Probability of find-
ing an embedding using the heuristic, average time required to find an embedding, and number
of physical qubits as a function of graph parameters (N, d) for fixed-degree graphs. (B) Number
of qubits and average embedding chain length as functions of N .

constraints are already satisfied with high probability. Rather, it degrades performance because

Jc maxes out the physical coupling on the chip so that logical couplings are scaled down as

J−1c , which will correspondingly reduce the spectral gap of the (physical) Hamiltonian, and can

also cause problems due to the finite bit precision and hardware imperfections of the D-Wave

system.

For the sparse graphs, embeddings are found using the heuristic of Cai et al. (21), which

is available as part of the D-Wave API toolkit. For each sparse graph instance, we attempt to

generate 10 embeddings using the heuristic with a time-out of 60 seconds. The probability of

finding an embedding is shown in fig. S3A (the d = 3 case is in agreement with (21, Fig. 7)).

The time required to find an embedding (on average) and the number of physical qubits Nemb

are also plotted in fig. S3A.
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Fig. S4. Choice of optimal coupling for sparse graphs using the heuristic embedding.

Fig. S3B shows the number of physical qubits for graphs of degree d = 3, 4, 5, 7, 9 embed-

ded using the heuristic, as well as the average chain length L = Nemb/N . This is compared

against the clique embeddings described above.

Because the heuristic embeddings differ markedly from clique embeddings, we do not use

the formula Jc = 9.5(N/20)3/2x derived above. Rather, the optimal Jc is found by hand,

running the quantum annealer for a range of N , d and Jc (fig. S4). We find that the optimal J c

is independent of N for sufficiently large N , while it increases slightly for small N for d = 7, 9.

We interpolate using the curves of fig. S4 to find the embedding parameter used in the main

text (Fig. 3C).

Section S2 CIM data and post-selection

The CIM is based on an OPO network, which is sensitive to optical phase fluctuations. During

the course of operation, the phase of the injection beam will drift. This drift is slow compared

to experimental timescales, but can become large if a calculation is run thousands of times.

To filter out out-of-phase computations (which always lead to the wrong answer), each CIM

includes a phase-checking mechanism, albeit somewhat different for the NTT and the Stanford

CIMs. We summarize both here.

.



In the NTT system, phase stability and calibration is implemented with a phase-check graph:

the 2,048 spins in the CIM are partitioned into a 16-spin (unused) header, a 32-spin bipartite

graph for phase checking, and a “frame” of 2,000 spins for the desired problem. Since N �

2000 for the problems in this paper, we can solve up to b2000/Nc ≈ 2000/N problems in

parallel per frame. The coupling matrix Jij has a block-diagonal structure (fig. S5A).

The couplings of the bipartite graph for phase-check are randomly set to +1 or −1 and the

value of the phase-check Hamiltonian HPC = 1
2

∑
ij Jijσiσj is computed after each run. If the

optical phase is incorrect, we find HPC > 0 because the system couplings are reversed and the

machine is trying to minimize −HPC. The top plot of fig. S5B shows the phase-check H PC

value (normalized to the maximum) as a function of time. HPC drops sharply to a negative

Jij matrix

Problem graphs

Phase-check
graph (bipartite)

16 32

2000 spins

Header Phase
check

Problem
graphs

A B C

D-Wave
(T = 1000µs)

Fig. S5. Data filtering and post-selection in NTT CIM. (A) Partitioning of NTT CIM spins
into a 16-spin header, a 32-spin phase-check graph, and 2,000 spins for problem graphs, and
the resulting Jij matrix. (B) Phase-check Hamiltonian HPC as a function of time (frame index),
and three post-selection techniques for inferring the success probability. (C) NTT CIM success
probability for SK and x = 0.5 MAX-CUT problems as a function of post-selection method.



value when the CIM is in phase, making it a good proxy for the CIM phase.

In the bottom plots of fig. S5B, three data-filtering techniques are shown. Here we plot

the free-running success probability (fraction of instances per frame in the ground state) for an

N = 50 problem (40 trials running in parallel per frame). Averaging over all frames requires no

post-processing, but gives a low success probability because we are including many trials when

the machine is out of phase. Filtering on the phase-check graph (green curve) does significantly

better; however, we are still averaging over the edges of the phase-check region where the

system is only marginally in phase. Still better success probabilities can be found by looking

for the best batch of 1,000 consecutive trials (25 consecutive frames) in the series (red curve).

This generally corresponds to the the CIM working in its best condition: when the feedback

signal is well in phase. This is the success probability we could expect from a well-engineered

CIM where the optical phase, pump power, and other optical degrees of freedom have been

sufficiently stabilized.

We compare the three post-selection methods in fig. S5C to show that our post-selection

techniques give only a constant improvement in success probability, and this constant is never

more than an order of magnitude. Thus, we can safely conclude that the CIM’s performance

advantage does not arise from cherry-picking good samples from the data. The “best batch”

method (red curves in fig. S5) is used to process all CIM data reported in the main text.

The data collected from the Stanford CIM was also post-processed to select only the runs

on the machine for which the optical setup was optimally stable. However, the procedure for

post-selection was slightly different to that used for the data from the NTT CIM. In the case

of the Stanford CIM, a recording of the homodyne measurement of the output pulses immedi-

ately before a run began was stored. During this recording phase, constant-amplitude pulses

were injected into the cavity. If the entire system is phase-stable, then the recorded homodyne

measurement results should not show large fluctuations from pulse to pulse. Furthermore, the



particular value of the phase of the injected light is also relevant (not just that it is ideally con-

stant), since the computation mechanism relies on interference of injected pulses with pulses in

the cavity, and how much interference is obtained is partially determined by the phase of the

injection pulses. We therefore post-selected not only for stability, but also for a particular mean

value of the homodyne measurement results, which was determined on an instance-by-instance

basis. The net effect of this post-selection procedure is to produce success probabilities that

represent the probabilities one would obtain if the CIM was always phase-stable whenever a

computation was run, and the phase was correctly calibrated for each problem instance.

The post-selected success probabilities were only on average 5× higher than the success

probabilities obtained when no post-selection was applied. This implies that even if one is

pessimistic about the prospects of improvement to the optical phase stabilization of the CIM,

and one assumes that the most stable the machine will ever be is as it was during the experiments

reported in this paper, then at worst one should divide the success probabilities for the Stanford

CIM reported in this paper by 5×. This gives the estimate for the expected success probabilities

for a machine that has the same fundamental operating principle as the currently implemented

CIM at Stanford, as well as the same experimental imperfections (including phase noise) that

the current setup has.

The CIMs at Stanford and NTT were run on the same (randomly-chosen) Ising problems for

N ≤ 100 MAX-CUT (edge density x = 0.5) and SK (fully connected). The average success

probabilities of the two machines agree to within a factor of 5 (fig. S6).

In order to compare the solution time Tsoln with D-Wave, we need the physical annealing

time for the CIM. A strict minimum for the annealing time is given by the product of the time

between pulses (equal to 1/f where f is the pump repetition frequency), the size of the problem



N , and the number of round trips per run R

T (min)
ann =

NR

f
(S1)

This is the effective annealing time if perfect parallelization is achieved and all spins are used

for logic (i.e. a negligible fraction of phase-check and dummy spins). Both Stanford and NTT

CIMs use R = 1000 round trips.

However, the annealing time is generally longer than T (min)
ann because dummy spins are added

to the cavity to compensate for the delays due to the DAC / ADC electronics in the feedback

circuit and to give the FPGA more time to finish the coupling computation. This increases the

cavity round-trip time and thus the annealing time.

In the NTT CIM, we used 5056 pulses in a 1-km fiber ring cavity as: 16-spin (header),

32-spin (phase check), 2000-spin (solve problem), 100-spin (blank), 2808-spin (free running in

FPGA calculation time), 100-spin (blank). The pump repetition rate is 1 GHz and the round-trip

time is 5µs. As only 2000 of 5056 pulses are used, even if perfect parallelism is employed, the

annealing time is approximately 2.5× longer than Eq. (S1), or Tann = (2.5N)µs, whereN is the

problem size. Fig. S6 plots the NTT CIM time-to-solution both with and without parallelism, to

enable a fair comparison with the D-Wave annealer (we did not attempt to parallelize D-Wave

to run multiple problems per anneal).

In the Stanford CIM, which did not employ parallelism due to its smaller number of spins,

the annealing time is Tann = 1.6ms for all problems. The Stanford CIM (24) features a 320-m

fiber ring cavity that contains 160 optical pulses (repetition rate 100 MHz), of which up to 100

can be used to encode Ising problems. The data in Fig. 2C come from the Stanford CIM, where

the above annealing time combined with the formula Tsoln = Tanndlog(0.01)/ log(1 − P )e is

used to calculate the time to solution.
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Fig. S6. Comparison of Stanford and NTT CIM performance for SK and dense MAX-CUT
problems. Annealing time is 1000 round trips. D-Wave data for Tann = 1, 10, 100, and 1000µs
are also plotted.

C-SDE simulations of CIM

The CIM is a time-multiplexed synchronously-pumped OPO with measurement feedback cou-

pling (fig. S7). It consists of a main loop (red) with a delay line for measurement and feedback

(blue). Because the OPO is weakly coupled, we can treat this system using truncated-Wigner

theory (36), which reduces the quantum dynamics to a set of c-number Langevin equations (c-

SDEs). For OPOs with low single-pass gain at threshold, continuous-time stochastic differential

equations can be employed (29). Since the round-trip gain of our system is high, a discrete-time

model is needed, where the evolution of a single round trip (represented as a discrete-time c-

SDE) consists of a series of seven discrete steps, each with its appropriate truncated-Wigner

Section S3.
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Fig. S7. Abstract schematic of measurement-feedback CIM. State variables are fields a, b.
Each process (1)–(7) is described in Table S1.

Step Description Truncated-Wigner Model
1 Beamsplitter ai cos(θm) + w

(1)
i sin(θm)→ ai

ai sin(θm)− w(1)
i cos(θm)→ bi

2 Loss ai cos(θL1) + w
(2)
i sin(θL1)→ ai

3 Loss bi cos(θL2) + w
(3)
i sin(θL2)→ bi

4 Detection bi → xi
FPGA

∑
j Jijxj → yi

Modulation C(F (t)yi; ymax) + w
(4)
i → bi

5 Beamsplitter ai cos(θf ) + bi sin(θf )→ ai

6 Loss ai cos(θL3) + w
(5)
i sin(θL3)→ ai

7 PSA Gain p+ w
(6)
i → pi

εL
√
p2i + a2i /2→ Bi

eBi
(
1 + 1

2
(e2Bi − 1)(1− (1 + a2i /2p

2
i )
−1/2)

)
ai → ai

Table S1. Seven steps in a single round trip for the measurement-feedback CIM and the ap-
propriate truncated Wigner description. Constants are chosen to match the Stanford CIM:
εL = 3.6×10−4, p = 2.8×103, sin(θm) = sin(θf ) =

√
0.1, sin(θL1) =

√
0.6, sin(θL2) =

√
0.5,

sin(θL3) =
√
0.6.

description (Table S1).

Steps 1 and 5 are standard beamsplitters, whose input/output equations match those in

classical optics. Steps 2, 3 and 6, which represent loss in the fiber loop and injection chan-

nel, can be modeled as beamsplitters with vacuum inputs. Homodyne detection converts the



real part of bi to a classical signal, discarding the imaginary part (only the real parts of op-

tical signals ai, bi are treated in this model). The resulting classical signal is processed in

the FPGA (step 4). The FPGA result is imprinted onto an optical field using a modulator,

adding the vacuum fluctuations of the injected field. The modulation signal is clamped (func-

tion C(z; z0) ≡ max(min(z, z0),−z0)) by the DAC maximum voltage (parameter ymax above).

Step 7 is the χ(2) phase-sensitive amplifier (PSA) gain. The formula is derived by solving the

nonlinear field equations (28, Sec. 2.2) in a χ(2) medium (38, Eq. (8)). All input vacuum fields

are normally distributed random variables: w(m)
i ∼ N(0, 1

2
). We note that our model bears

resemblance to mean-field annealing approaches to the Ising problem (62).

In this paper, the constants are chosen to match the experimental parameters of the Stanford

CIM. The model is sensitive to the measurement and feedback couplings (θm, θf ), but less

sensitive to the overall loss, which simply increases the amount of quantum noise in the system

by a small amount.

The Stanford CIM employs an “injection turn-on” scheme. We start with the feedback

turned off and pump the OPO to slightly below threshold. Then the feedback term is slowly

increased, lowering the effective threshold of the coupled-OPO system (24). This is opposite to

the “pump turn-on” technique used in the NTT CIM and optical-feedback systems (25, 30, 37),

where the coupling (and therefore threshold) stays fixed and the pump is increased. But the

fundamental dynamics (bifurcation from squeezed vacuum driven by quantum noise) is the

same, and we expect similar computational performance for both machines. The key degree of

freedom is the pump schedule F (t). For simplicity, we use a linear ramp

F (t) = Fmax
t

Tann
(S2)

which increases from zero to Fmax over Tann round trips (the runtime, or “annealing time”, of

the CIM, where Tann = 1000 in the experiments in this paper.)
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The free parameter Fmax sets the scale of the feedback strength, and is tuned to maximize

the success probability. Intuitively, one wants the feedback term yi to be comparable to the

circulating field ai, as a small feedback term will not effectively couple the OPOs but a very

large term will lead to spurious behavior that no longer maps onto the Ising problem (29).

Since the injected field is proportional to F (t)
∑

j Jijaj , and since in random non-structured

problems, the aj are expected to be random, it is reasonable to assume that

Fmax ∝
( 1

N

∑
ij

(Jij)
2
)−1/2

(S3)

For SK and dense MAX-CUT problems, Eq. (S3) predicts Fmax ∝ N−1/2, while for sparse

problems, Fmax should be a constant. This prediction is confirmed numerically in fig. S8. The

success probability depends on bothN and Fmax, and the peak is always located at FmaxN
1/2 =

const for SK and dense MAX-CUT, and Fmax = const for sparse MAX-CUT. The optimal Fmax



is roughly

Fmax =


3.0N−1/2 (SK)
3.0N−1/2 (Dense MAX-CUT)
0.35 (Cubic MAX-CUT)

(S4)

Using the optimal Fmax in Eq. (S4), we simulate the CIM on all of the problems presented

in the paper. Fig. S9 shows the result. Strictly speaking, the model is only applicable to the

Stanford CIM, but both machines give similar performance that is roughly matches the c-SDE

simulations.

C-SDE simulations are run to assess the effect of the annealing time and to determine the
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optimal-annealing-time scaling of the CIM time to solution. Fig. S10 plots the success proba-

bility and time to solution (normalized to the round-trip time) for annealing times ranging from

Tann = 10 round trips up to Tann = 1000. We see clear exponential behavior in the asymptotic

limit, especially when Tann is small. The plots fit reasonably well to a logistic curve intersecting

the origin

P (N) =
α

(α− 1) + eβN
N→∞−→ αe−βN (S5)

Likewise, the time-to-solution curves are rising exponentials in the large-N limit. When plotted

on a logarithmic scale, the intercept of the curves increases with Tann, while the slope decreases.

This makes clear that, as in quantum annealing, there is a tradeoff between success probabil-



ity and annealing time (18). The optimal time to solution is given by the lower envelope of

these curves. In quantum annealing on glassy chimera-graph problems, an empirical scaling

of Tsoln ∼ exp(O(N1/2)) has been reported (18, 19, 49). Curves of the form AeBN
1/2 are plot-

ted in fig. S10 for reference. The rough fit suggests, but is not conclusive proof of, a similar

time-to-solution scaling for coherent Ising machines.

Optimal 

To obtain the best performance of the D-Wave annealer under a fixed anneal schedule, we

optimize Tsoln with respect to the annealing time. For a fixed Tann we find the square-exponential

relation P = e−(N/N0)2 for SK and dense MAX-CUT problems. Cubic MAX-CUT problems

also fit this curve, especially for short anneals. In the range Tann ∈ [1, 2000]µs of admissible

annealing times, we find N0 ≈ α + β log10(Tann/µs), where α and β are problem-dependent

constants (Table S2).

The top graphs in fig. S11 plot the dependence of T soln on Tann for fixed N , allowing one

to visualize the optimal annealing time for each problem size. The aforementioned fit agrees

reasonably with the data for most problem sizes, although we make no claims about its validity

outside the range of annealing times tested.

The lower plots in fig. S11 show the D-Wave time to solution in terms of problem size.

The lower envelope of the fixed-Tann curves, approximated as a line (Tsoln = AeBN ), gives

the optimal time to solution for the DW2Q. For comparison, the optimal CIM time-to-solution 

and

SK MAX-CUT (dense) MAX-CUT (cubic)
α 15.24 10.05 53.45
β 2.81 1.39 22.15

Table S2. Problem-dependent constants α β used in the relation N 0 = α + β log10(T/µs)
for the success probability exponential P = e−(N/N0)2

−annealing t ime analysis  Section S4..
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Fig S11 Time-to-solution analysis for D-Wave at optimal annealing time. Top: D-Wave
time to solution Tsoln as a function of the annealing time for fixed problem sizes, illustrating
the optimal anneal time. Bottom: Tsoln as a function of problem size, with optimal anneal-time
curve approximated as a line. CIM time to solution at optimal anneal time (from Fig. S10)
plotted for comparison (NTT CIM with parallelization, round-trip time (2.5N)ns).

obtained in fig. S10 is also plotted. The CIM round-trip time used is the value for the NTT

CIM accounting for parallelization: (2.5N)ns; see Sec. S2.

Since the optimal annealing time lies in the experimentally accessible regime [1, 2000]µs

for only a limited range of problem sizes (N ∈ [40, 60] for SK, [30, 50] for dense MAX-CUT),

it is difficult to estimate the precise shape of the lower envelope by looking at ig. S11. While

the data is consistent with an exponential, it is also consistent with many other curves, so we

caution against naively extrapolating these curves. Nevertheless, at optimal annealing time,

the CIM is substantially faster (≥ 103× for SK, ≥ 106× for dense MAX-CUT) at the upper

. .
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Fig S12 CIM time to solution compared against the parallel tempering algorithm imple-
mented in the Unified Framework for Optimization (UFO). The error bars for PT@UFO corre-
sponds to the minimum and maximum value of time to solution for that specific size. All UFO
runs were performed on Intel Xeon CPU E5-1650 v2 (3.50GHz).

end of experimentally measured problem sizes, while D-Wave has a performance advantage of

10–100× for cubic MAX-CUT, although this advantage narrows with larger problem sizes.

Performance of parallel tempering

Parallel tempering is a state-of-the-art classical optimization technique that has been shown

to perform well on a variety of Ising problems (49, 63, 64). Here, we include results pro-

vided by Salvatore Mandrà, which made use of the implementation of parallel tempering in the

NASA/TAMU Unified Framework for Optimization (UFO). The comparison shows respectable

performance of NTT’s parallel CIM compared with PT@UFO. We see that NTT’s parallel CIM

comes close to the performance of PT@UFO for the SK problem instances in the size range

considered, and is also close on the MAX-CUT problem up through the middle range of prob-

lem sizes considered, but diverges for larger problem sizes.

. .
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