1,148 research outputs found

    Analysis of dynamic characteristics of fluid force induced by labyrinth seal

    Get PDF
    Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers

    MHD Simulation of The Inner Galaxy with Radiative Cooling and Heating

    Full text link
    We investigate the role of magnetic field on the gas dynamics in the Galactic bulge region by three dimensional simulations with radiative cooling and heating. While high-temperature corona with T>106 KT>10^6\ {\rm K} is formed in the halo regions, the temperature near the Galactic plane is 104 K\lesssim 10^4\ {\rm K} following the thermal equilibrium curve determined by the radiative cooling and heating. Although the thermal energy of the interstellar gas is lost by radiative cooling, the saturation level of the magnetic field strength does not significantly depend on the radiative cooling and heating. The magnetic field strength is amplified to 10 μG10\ {\rm \mu G} on average, and reaches several hundred μG{\rm \mu G} locally. We find the formation of magnetically dominated regions at mid-latitudes in the case with the radiative cooling and heating, which is not seen in the case without radiative effect. The vertical thickness of the mid-latitude regions is 50150 pc50-150\ {\rm pc} at the radial location of 0.40.8 kpc0.4-0.8 \ {\rm kpc} from the Galactic center, which is comparable to the observed vertical distribution of neutral atomic gas. When we take the average of different components of energy density integrated over the Galactic bulge region, the magnetic energy is comparable to the thermal energy. We conclude that the magnetic field plays a substantial role in controlling the dynamical and thermal properties of the Galactic bulge region.Comment: Submitted to ApJ; 21 pages, 18 figures 3 tables. Comment are welcom

    Charge Ordering in alpha-(BEDT-TTF)2I3 by synchrotron x-ray diffraction

    Full text link
    The spatial charge arrangement of a typical quasi-two-dimensional organic conductor alpha-(BEDT-TTF)2I3 is revealed by single crystal structure analysis using synchrotron radiation. The results show that the horizontal stripe type structure, which was suggested by mean field theory, is established. We also find the charge disproportion above the metal-insulator transition temperature and a significant change in transfer integrals caused by the phase transition. Our result elucidates the insulating phase of this material as a 2k_F charge density localization.Comment: 8 pages, 5 figures, 1 tabl

    An Experimental Study of Stable Operating Conditions for a High-Sensitivity Induction Gradiometer

    Full text link

    Growth Dynamics of Photoinduced Domains in Two-Dimensional Charge-Ordered Conductors Depending on Stabilization Mechanisms

    Full text link
    Photoinduced melting of horizontal-stripe charge orders in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2RbZn(SCN)4[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] and \alpha-(BEDT-TTF)2I3 is investigated theoretically. By numerically solving the time-dependent Schr\"odinger equation, we study the photoinduced dynamics in extended Peierls-Hubbard models on anisotropic triangular lattices within the Hartree-Fock approximation. The melting of the charge order needs more energy for \theta-(BEDT-TTF)2RbZn(SCN)4 than for \alpha-(BEDT-TTF)2I3, which is a consequence of the larger stabilization energy in \theta-(BEDT-TTF)2RbZn(SCN)4. After local photoexcitation in the charge ordered states, the growth of a photoinduced domain shows anisotropy. In \theta-(BEDT-TTF)2RbZn(SCN)4, the domain hardly expands to the direction perpendicular to the horizontal-stripes. This is because all the molecules on the hole-rich stripe are rotated in one direction and those on the hole-poor stripe in the other direction. They modulate horizontally connected transfer integrals homogeneously, stabilizing the charge order stripe by stripe. In \alpha-(BEDT-TTF)2I3, lattice distortions locally stabilize the charge order so that it is easily weakened by local photoexcitation. The photoinduced domain indeed expands in the plane. These results are consistent with recent observation by femtosecond reflection spectroscopy.Comment: 9 pages, 8 figures, to appear in J. Phys. Soc. Jpn. Vol. 79 (2010) No.

    Oxytocin receptor gene variations predict neural and behavioral response to oxytocin in autism

    Get PDF
    Oxytocin appears beneficial for autism spectrum disorder (ASD), and more than 20 single-nucleotide polymorphisms (SNPs) in oxytocin receptor (OXTR) are relevant to ASD. However, neither biological functions of OXTR SNPs in ASD nor critical OXTR SNPs that determine oxytocin's effects on ASD remain unknown. Here, using a machine-learning algorithm that was designed to evaluate collective effects of multiple SNPs and automatically identify most informative SNPs, we examined relationships between 27 representative OXTR SNPs and six types of behavioral/neural response to oxytocin in ASD individuals. The oxytocin effects were extracted from our previous placebo-controlled within-participant clinical trial administering single-dose intranasal oxytocin to 38 high-functioning adult Japanese ASD males. Consequently, we identified six different SNP sets that could accurately predict the six different oxytocin efficacies, and confirmed the robustness of these SNP selections against variations of the datasets and analysis parameters. Moreover, major alleles of several prominent OXTR SNPs-including rs53576 and rs2254298-were found to have dissociable effects on the oxytocin efficacies. These findings suggest biological functions of the OXTR SNP variants on autistic oxytocin responses, and implied that clinical oxytocin efficacy may be genetically predicted before its actual administration, which would contribute to establishment of future precision medicines for ASD

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure
    corecore