4 research outputs found

    Admission for COPD Exacerbation Is Associated with the Clinical Diagnosis of Pulmonary Hypertension: Results from a Retrospective Longitudinal Study of a Veteran Population

    No full text
    <p>Patients with chronic obstructive pulmonary disease and pulmonary hypertension (PH–COPD) have an increased risk of hospitalizations and death compared to COPD alone. Identifying PH in COPD is challenging because performing right heart catheterization, the gold standard for PH diagnosis, is invasive and not routinely performed. Clinical characterization of COPD patients at risk who are progressing toward PH will aid therapeutic development at earlier stages of progressively fatal PH–COPD. We studied the records of 5,45,086 patients in a large Veterans Affairs healthcare network (2000–2012) with a primary discharge diagnosis of COPD based on encounters' ICD-9 codes and further stratified into those who received an additional ICD-9 code for a PH diagnosis. Patients with PH–COPD were assigned to one of the four subgroups: those with (a) no history of exacerbation or hospital admissions, (b) history of exacerbations but no hospital admissions, (c) hospital admissions unrelated to COPD and (d) history of COPD exacerbation-related hospital admissions. We also examined the COPD and COPD-PH cohorts for associated comorbidities such as cardiac disease and the presence of obstructive sleep apnea (OSA). A regression analysis revealed that patients with COPD exacerbation-related hospital admissions had 7 × higher risk of having a concomitant clinical diagnosis of PH compared to non-hospitalized patients. COPD-PH patients had higher rates of cardiac comorbidities (89% vs. 66%) and OSA (34% vs. 16%) compared to COPD alone. We conclude that COPD patients hospitalized for COPD exacerbations are at a higher risk for developing PH, and hospitalized COPD patients with cardiac comorbidities and/or OSA should be screened as at-risk population for developing PH.</p

    Self-gated, dynamic contrast-enhanced magnetic resonance imaging with compressed-sensing reconstruction for evaluating endothelial permeability in the aortic root of atherosclerotic mice

    No full text
    High-risk atherosclerotic plaques are characterized by active inflammation and abundant leaky microvessels. We present a self-gated, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition with compressed sensing reconstruction and apply it to assess longitudinal changes in endothelial permeability in the aortic root of Apoe−/− atherosclerotic mice during natural disease progression. Twenty-four, 8-week-old, female Apoe−/− mice were divided into four groups (n = 6 each) and imaged with self-gated DCE-MRI at 4, 8, 12, and 16 weeks after high-fat diet initiation, and then euthanized for CD68 immunohistochemistry for macrophages. Eight additional mice were kept on a high-fat diet and imaged longitudinally at the same time points. Aortic-root pseudo-concentration curves were analyzed using a validated piecewise linear model. Contrast agent wash-in and washout slopes (b1 and b2) were measured as surrogates of aortic root endothelial permeability and compared with macrophage density by immunohistochemistry. b2, indicating contrast agent washout, was significantly higher in mice kept on an high-fat diet for longer periods of time (p = 0.03). Group comparison revealed significant differences between mice on a high-fat diet for 4 versus 16 weeks (p = 0.03). Macrophage density also significantly increased with diet duration (p = 0.009). Spearman correlation between b2 from DCE-MRI and macrophage density indicated a weak relationship between the two parameters (r = 0.28, p = 0.20). Validated piecewise linear modeling of the DCE-MRI data showed that the aortic root contrast agent washout rate is significantly different during disease progression. Further development of this technique from a single-slice to a 3D acquisition may enable better investigation of the relationship between in vivo imaging of endothelial permeability and atherosclerotic plaques' genetic, molecular, and cellular makeup in this important model of disease
    corecore