99 research outputs found

    Band Degeneracy and Mott Transition: Dynamical Mean Field Study

    Full text link
    We investigate the Mott transition in infinite dimensions in the orbitally degenerate Hubbard model. We find that the qualitative features of the Mott transition found in the one band model are also present in the orbitally degenerate case. Surprisingly, the quantitative aspects of the transition around density one are not very sensitive to orbital degeneracy, justifying the quantitative success of the one band model which was previously applied to orbitally degenerate systems. We contrast this with quantities that have a sizeable dependence on the orbital degeneracy and comment on the role of the intraatomic exchange J

    Spectral functions in doped transition metal oxides

    Full text link
    We present experimental photoemission and inverse photoemission spectra of SrTiO3−δ_{3- \delta} representing electron doped d0d^0 systems. Photoemission spectra in presence of electron doping exhibit prominent features arising from electron correlation effects, while the inverse photoemssion spectra are dominated by spectral features explainable within single-particle approaches. We show that such a spectral evolution in chemically doped correlated systems is not compatible with expectations based on Hubbard or any other similar model. We present a new theoretical approach taking into account the inhomogeneity of the `real' system which gives qualitatively different results compared to standard `homogeneous' models and is in quantitative agreement with experiments.Comment: 10 pages; 1 tex file+4 postscript files (to appear in Europhysics Letters

    Evolution of photoemission spectral functions in doped transition metal oxides

    Full text link
    We discuss the experimental photoemission and inverse photoemission of early transition metal oxides, in the light of the dynamical mean field theory of correlated electrons which becomes exact in the limit of infinite dimensions. We argue that a comprehensive description of the experimental data requires spatial inhomogeneities and present a calculation of the evolution of the spectral function in an inhomogenous system with various degrees of inhomogeneity. We also point out that comparaison of experimental results and large d calculations require that the degree of correlation and disorder is larger in the surface than in the bulk

    SPECTRAL FUNCTIONS OF CORRELATED ELECTRON SYSTEMS IN THE LOCAL IMPURITY SELF CONSISTENT APPROXIMATION

    Get PDF
    Abstract-We describe the evolution of the spectral density as we dope a Mott insulator within a dynamical mean field method. After giving an intuitive description of this Local Impurity Self-Consistent Approximation (LISA) for a model with several orbitals per unit cell, we illustrate its implementation in the context of the Hubbard model in infinite dimensions. For this purpose a new iterative perturbation theory (IPT) scheme is introduced and compared with results from exact diagonalization

    Dynamical Mean Field Theory of the Antiferromagnetic Metal to Antiferromagnetic Insulator Transition

    Full text link
    We study the antiferromagnetic metal to antiferromagnetic insulator using dynamical mean field theory and exact diagonalization methods. We find two qualitatively different behaviors depending on the degree of magnetic correlations. For strong correlations combined with magnetic frustration, the transition can be described in terms of a renormalized slater theory, with a continuous gap closure driven by the magnetism but strongly renormalized by correlations. For weak magnetic correlations, the transition is weakly first order.Comment: 4 pages, uses epsfig,4 figures,notational errors rectifie

    The asymmetric single-impurity Anderson model - the modified perturbation theory

    Full text link
    We investigate the single-impurity Anderson model by means of the recently introduced modified perturbation theory. This approximation scheme yields reasonable results away from the symmetric case. The agreement with exactly known results for the symmetric case is checked, and results for the non-symmetric case are presented. With decreasing conduction band occupation, the breakdown of the screening of the local moment is observed. In the crossover regime between Kondo limit and mixed-valence regime, an enhanced zero-temperature susceptibility is found.Comment: 7 pages, 7 figures, to appear in Physica

    Magnetotransport in the doped Mott insulator

    Full text link
    We investigate the Hall effect and the magnetoresistance of strongly correlated electron systems using the dynamical mean-field theory. We treat the low- and high-temperature limits analytically and explore some aspects of the intermediate-temperature regime numerically. We observe that a bipartite-lattice condition is responsible for the high-temperature result σxy∼1/T2\sigma_{xy}\sim 1/T^2 obtained by various authors, whereas the general behavior is σxy∼1/T\sigma_{xy}\sim 1/T, as for the longitudinal conductivity. We find that Kohler's rule is neither obeyed at high nor at intermediate temperatures.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Quantum dots as scatterers in electronic transport : interference and correlations

    Full text link
    Conductance through a system consisting of a wire with side-attached quantum dots is calculated. Such geometry of the device allows to study the coexistence of quantum interference, electron correlations and their influence on conductance. We underline the differences between "classical" Fano resonance in which the resonant channel is of single-particle nature and "many-body" Fano resonance with the resonant channel formed by Kondo effect. The influence of electron-electron interactions on the Fano resonance shape is also analyzed.Comment: 13 pages, 3 figures, to appear in Solid State Communications, elsart styl

    Thermoelectric Response Near the Density Driven Mott Transition

    Full text link
    We investigate the thermoelectric response of correlated electron systems near the density driven Mott transition using the dynamical mean field theory.Comment: 4 pages, 2 embedded figure

    Temperature-dependent electronic structure and ferromagnetism in the d=oo Hubbard model studied by a modfied perturbation theory

    Full text link
    The infinite-dimensional Hubbard model is studied by means of a modified perturbation theory. The approach reduces to the iterative perturbation theory for weak coupling. It is exact in the atomic limit and correctly reproduces the dispersions and the weights of the Hubbard bands in the strong-coupling regime for arbitrary fillings. Results are presented for the hyper-cubic and an fcc-type lattice. For the latter we find ferromagnetic solutions. The filling-dependent Curie temperature is compared with the results of a recent Quantum Monte Carlo study.Comment: RevTeX, 5 pages, 6 eps figures included, Phys. Rev. B (in press), Ref. 16 correcte
    • …
    corecore