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Abstract-We describe the evolution of the spectral density as we dope a Mott insulator within a dynamical 
mean field method. After giving an intuitive description of this Local Impurity Self-Consistent Approximation 
(LISA) for a model with several orbitals per unit cell, we illustrate its implementation in the context of the 
Hubbard model in infinite dimensions. For this purpose a new iterative perturbation theory (IPT) scheme is 
introduced and compared with results from exact diagonalization. 

1. INTRODUCTION 

The evolution of spectral functions near a Mott transition 
is a long standing problem in the physics of strongly in- 
teracting fermions. Recently some progress has been made 
using a dynamical mean field method. This approach dates 
back to the mid seventies under names such as dynamical 
coherent potential approximation (CPA) or local approxi- 
mation. It received substantial attention following the pio- 
neering paper of Metzner and Vollhardt [l] pointing out the 
correct scaling of the hopping integrals necessary to obtain 
a well defined limit of large lattice coordination. 

A very useful formulation of the mean field approach 
is based on viewing a lattice model impurity embedded 
in a medium obeying a self-consistency condition. For the 
Hubbard model, the corresponding impurity model is the 
Anderson model [2]. Other models of strongly correlated 
electrons are associated with other impurity models subject 
to different self-consistency conditions [3]. 

This method is very powerful because several numerical 
and analytical techniques which have been developed to an- 
alyze impurity models over the years can be implemented 
to solve the mean field equations. Several approaches have 
been used successfully for this purpose: qualitative analy- 
sis of the mean field equations [2], quantum Monte-Carlo 
methods [4-61, iterative perturbation theory [2,7], exact di- 
agonalization methods [8], and the projective self-consistent 
method, a renormalization technique [9]. 

In this note we present a pedagogical discussion of the 
main ideas behind the mapping from lattice onto impurity 
models stressing the generality of the approach and its in- 
tuitive character. Then, we will review some aspects of the 
evolution of the spectral function of the Mott insulator at 
low temperatures. In this context a new scheme which al- 
lows to perform iterative perturbation theory away from 
half filling will be introduced and compared with results 
from exact diagonalization. 

2. FROM LATTICE MODELS TO IMPURITY 
MODELS 

The starting point of this section is a lattice model of 
strongly correlated electrons containing various orbitals per 
unit cell. We use a compact notation where the index cu = 
(m, LT) combines the orbital m and the spin cr. The starting 
Hamiltonian, which could in principle be obtained from 
an ab initio constrained LDA calculation after a suitable 
folding to low energies as in Ref. [lo] or from physical 
considerations is assumed to be of the form: 

Now we focus on a single unit cell and integrate out 
all degrees of freedom except for those which reside in the 
selected unit cell. These are described by operators c, and 
no longer carry a site index. The dynamics of the resulting 
problem are described by an impurity model which describes 
an impurity ca coupled to a bath of fermions (&,,,) (see 
Fig. 1): 

Himp = C(Eao - ~~,~I)C~CB + ~Ia~r&e,fCflc~ca 
as * 

+ c fb@&ab, + ~(vblbp,d$& + h.c.) (2) 

bw k 

From the impurity model we can obtain all the local 
correlation functions, since by construction the local lattice 
Green’s functions are identical to the impurity Green’s fimc- 
tion e = ( Ga,p). We use a matrix notation so that the local 
Green’s function is given by 

G&T - T’) = -(%(r)C;(r’)) (3) 
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Fig. 1. Illustration of the unit cell containing the local degrees of 
freedom and the rest of the crystal treated as a bath. In the selected 
unit cell, different correlated configurations are fluctuating. Non 

interacting electrons describe the effective medium. 

This should be viewed as a functional of the parameters 
Q, and V&,,. To determine these parameters we construct 
the “Weiss field” which describes the effect of the rest of 
the electrons on the selected cell, Zb_’ (iw.) = (iw, + H)P - 
i? - (&, yf$‘$ ), and the self energy of the impurity, 

r(iwn) = Gi’(iwn) - 6-l (iw.), viewed as a functional of 
Q,, and I&. These parameters are determined by requiring 
that the bath and the local degrees of freedom describe the 
electrons in the original lattice problem Namely we can 
construct the local Green’s function from the lattice Green’s 
function obtained by adding a k independent self energy to 
the non interacting lattice Green’s function (obtained from 
eqn (1) by setting the interaction terms to zero) or from the 
impurity model. 

GUW,) = ; ((iw, + /l,9 - f(k) - 2(iw,) - 8)-l (4) 

Notice that the mean field equations for all the models 
in [3] are particular cases of eqns (2) and (4). 

3. IPT AWAY FROM HALF FILLING 

To make progress one needs a practical and accurate tech- 
nique for solving the system of eqn (4). The computational 
requirements of the exact diagonalization and the quantum 
Monte-Carlo methods are such that they can only be im- 
plemented for very simple Hamiltonians. To carry out real- 
istic calculations it is necessary to have an accurate but fast 
algorithm for solving the Anderson impurity model. Here 
we introduce a new perturbative method and illustTate it by 

applying it to the Hubbard model (one band per unit cell) 
away from half filling. 

The approach is in the spirit of the iterative perturbation 
theory approach introduced in [7,12]. The key idea is to 
search for a self energy as a functional of the “Weiss field” 
such that the self energy expression becomes exact both 
in the weak and in the strong coupling limit. Moreover, it 
should have the correct behavior both at small and at large 
frequencies. The naive extension of the method originally 
proposed for half filling fails to give reasonable results for 
finite doping. However, we propose a generalization to arbi- 
trary filling by constructing a self energy expression which 
has the correct behavior in the limits discussed above: 

(2) 

c a 1.a) (w) 
(w) = 1 _ <l-n)rf-&l+filJ, (2) 

no(l-no)u* L (W) 

(5) 

Here xi2’ (w) is the normal second order contribution 
to the self energy evaluated by the bare Green’s function 

Go(w) = w_iro&wj (Bethe lattice). The parameter $0 is 
determined such that the Luttinger theorem is fulfilled (/.~a = 
p - Un- ~,‘“[fi~~](w = 0), PO = plu=~). The particle num- 
ber is given by IZ = $ ]!m ImG(w)dw. In analogy, no is 
a fictitious particle number computed from GO. The self- 
consistency condition becomes 

(2) 

G-'(w) = Gil(w) - jlo + Jo - Un- c(w). (6) 

For the numerical implementation, it is more convenient 
to 8x DO (rather than p), Then, starting with a guess for G 
and cc, one can compute GO, tto and 11. Afterwards eqn (5) 
yields Z(2) (w) , and we obtain a new /J from the Luttinger 
theorem. The loop is closed by eqn (6). 

It is easy to check that in the case of half filling the 
procedure reduces to ordinary IPT. In the weak coupling 
limit eqn (5) is exact to order U2. Moreover, it can be 
verified that the expression becomes also exact for U -, ~0. 
The correct low frequency behavior is realized by satisfying 
the Luttinger theorem This is the main difference with an 
earlier scheme which uses related ideas [ll] and is essential 
to obtain good agreement with the exact diagonalization 
results at low temperatures. 

We establish the accuracy of our method by comparing it 
with results obtained using the exact diagonalization algo- 
rithm to solve the impurity model, as described by Caffarel 
and Krauth [8]. Both methods are in close agreement when 
used on the imaginary axis. The real advantage of combin- 
ing our perturbation scheme with the exact diagonalization 
is shown when we display the spectral functions obtained 
by these two methods on the real axis (Fig. 2). 

It is clear that the exact diagonalization is doing its best in 
producing the correct spectral distribution. But it is unable 
to give a smooth density of states. Instead several sharp 
structures occur as a consequence of treating only a finite 
number of orbitals in the Anderson model. 
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Fig. 2. ImG(w) at T = 0 for U = 40 and hole doping 6 = 0.14: 
iterative perturbation theory (full line) vs exact diagonahzation 

(&shed line). 

As an example, Fig. 3 shows the evolution of the spectral 

density of the doped Mott insulator with increasing hole 

doping S. The qualitative features are those expected from 
the spectra of the single impurity [2] and are in agreement 
with the quantum Monte-Carlo calculations [ 131. For small 
doping, there is a clear resonance peak at the fermi level. 
As S is increased, the peak broadens and is shifted through 
the lower Hubbard band. At the same time the weight of 
the upper band decreases. 

The most striking feature of the evolution of the spec- 
tral function as a function of doping is the finite shift of 
the Kondo resonance from the insulating band edge as the 
doping goes to zero. It was demonstrated analytically that 
this is a genuine property of the exact solution of the Hub- 
bard model in infinite dimensions using the projective self- 
consistent method [ 141 and is one of the most striking prop- 
erties of the Hubbard model in large dimensions. This fea- 
ture did not appear in the earlier studies of Hubbard model 
in large dimensions using Monte-Carlo techniques [13) at 
high temperatures, and is also not easily seen in exact diag- 
onalization algorithms [ 151. 

4. CONCLUSIONS 

The dynamical mean field approach is widely applica- 
ble to the one particle spectroscopy of correlated electrons. 
The mean field equations are tractable and contain rather 
rich information. A very important lesson is that it is nec- 
essary to use a combination of analytical and numerical 
techniques to obtain reliable results on the physical content 
of the mean field theory. This was illustrated in a discus- 
sion of the spectral function of the doped Mott insulator. In 
this context, we reported briefly a new pertubation scheme 
which allows to perform IPT away from half filling. This 

Fig. 3. Evolution of the spectral function for Ii = 4 and 2’ = 0 
with increasing hole doping 6. 

approach is very economical and promising and has already 

been extended to systems with more complex units cells, as 

will be reported elsewhere. 
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