428 research outputs found

    High surface quality micro machining of monocrystalline diamond by picosecond pulsed laser

    Get PDF
    In micro machining of monocrystalline diamond by pulsed laser, unique processing characteristics appeared only under a few ten picosecond pulse duration and a certain overlap rate of laser shot. Cracks mostly propagate in parallel direction to top surface of workpiece, although the laser beam axis is perpendicular to the surface. This processed area can keep diamond structure, and its surface roughness is smaller than R-a = 0.2 mu M. New laser micro machining method to keep diamond structure and small surface roughness is proposed. This method can contribute to reduce the polishing process in micro machining of diamond. (C) 2019 Published by Elsevier Ltd on behalf of CIRP

    s-wave pairing in the optimally-doped LaO0.5F0.5BiS2 superconductor

    Full text link
    We report on the magnetic and superconducting properties of LaO0.5F0.5BiS2 by means of zero- (ZF) and transverse-field (TF) muon-spin spectroscopy measurements (uSR). Contrary to previous results on iron-based superconductors, measurements in zero field demonstrate the absence of magnetically ordered phases. TF-uSR data give access to the superfluid density, which shows a marked 2D character with a dominant s-wave temperature behavior. The field dependence of the magnetic penetration depth confirms this finding and further suggests the presence of an anisotropic superconducting gap

    Metallic phase in stoichiometric CeOBiS 2 revealed by space-resolved ARPES

    Get PDF
    Recently CeOBiS2 system without any fluorine doping is found to show superconductivity posing question on its origin. Using space resolved ARPES we have found a metallic phase embedded in the morphological defects and at the sample edges of stoichiometric CeOBiS2. While bulk of the sample is semiconducting, the embedded metallic phase is characterized by the usual electron pocket at X point, similar to the Fermi surface of doped BiS2-based superconductors. Typical size of the observed metallic domain is larger than the superconducting correlation length of the system suggesting that the observed superconductivity in undoped CeOBiS2 might be due to this embedded metallic phase at the defects. The results also suggest a possible way to develop new systems by manipulation of the defects in these chalcogenides with structural instability

    Transport properties of the layered Rh oxide K_0.49RhO_2

    Full text link
    We report measurements and analyses of resistivity, thermopower and Hall coefficient of single-crystalline samples of the layered Rh oxide K_0.49RhO_2. The resistivity is proportional to the square of temperature up to 300 K, and the thermopower is proportional to temperature up to 140 K. The Hall coefficient increases linearly with temperature above 100 K, which is ascribed to the triangular network of Rh in this compound. The different transport properties between Na_xCoO_2 and K_0.49RhO_2 are discussed on the basis of the different band width between Co and Rh evaluated from the magnetotransport.Comment: 3 figures, submitted to PR
    corecore