537 research outputs found

    Metallic phase in stoichiometric CeOBiS 2 revealed by space-resolved ARPES

    Get PDF
    Recently CeOBiS2 system without any fluorine doping is found to show superconductivity posing question on its origin. Using space resolved ARPES we have found a metallic phase embedded in the morphological defects and at the sample edges of stoichiometric CeOBiS2. While bulk of the sample is semiconducting, the embedded metallic phase is characterized by the usual electron pocket at X point, similar to the Fermi surface of doped BiS2-based superconductors. Typical size of the observed metallic domain is larger than the superconducting correlation length of the system suggesting that the observed superconductivity in undoped CeOBiS2 might be due to this embedded metallic phase at the defects. The results also suggest a possible way to develop new systems by manipulation of the defects in these chalcogenides with structural instability

    Ac conductivity and dielectric properties of CuFe1−xCrxO2 : Mg delafossite

    Get PDF
    The electrical and dielectric properties of CuFe(1−x)Cr(x)O(2) (0 ≤ x ≤ 1) powders, doped with 3% of Mg and prepared by solid-state reaction, were studied by broadband dielectric spectroscopy in the temperature range from −100 to 150 °C. The frequency-dependent electrical and dielectric data have been discussed in the framework of a power law conductivity and complex impedance and dielectric modulus. At room temperature, the ac conductivity behaviour is characteristic of the charge transport in CuFe1−xCrxO2 powders. The substitution of Fe3+ by Cr3+ results in an increase in dc conductivity and a decrease in the Cu+–Cu+ distance. Dc conductivity, characteristic onset frequency and Havriliak–Negami characteristics relaxation times are thermally activated above −40 °C for x = 0.835. The associated activation energies obtained from dc and ac conductivity and from impedance and modulus losses are similar and show that CuFe1−xCrxO2 delafossite powders satisfy the BNN relation. Dc and ac conductivities have the same transport mechanism, namely thermally activated nearest neighbour hopping and tunnelling hopping above and below −40 °C, respectively

    High surface quality micro machining of monocrystalline diamond by picosecond pulsed laser

    Get PDF
    In micro machining of monocrystalline diamond by pulsed laser, unique processing characteristics appeared only under a few ten picosecond pulse duration and a certain overlap rate of laser shot. Cracks mostly propagate in parallel direction to top surface of workpiece, although the laser beam axis is perpendicular to the surface. This processed area can keep diamond structure, and its surface roughness is smaller than R-a = 0.2 mu M. New laser micro machining method to keep diamond structure and small surface roughness is proposed. This method can contribute to reduce the polishing process in micro machining of diamond. (C) 2019 Published by Elsevier Ltd on behalf of CIRP
    corecore