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Abstract

The electrical and dielectric properties of CuFe1−xCrxO2 (0 6 x 6 1) powders, doped with

3% of Mg and prepared by solid-state reaction, were studied by broadband dielectric

spectroscopy in the temperature range from −100 to 150 ◦C. The frequency-dependent

electrical and dielectric data have been discussed in the framework of a power law conductivity

and complex impedance and dielectric modulus. At room temperature, the ac conductivity

behaviour is characteristic of the charge transport in CuFe1−xCrxO2 powders. The substitution

of Fe3+ by Cr3+ results in an increase in dc conductivity and a decrease in the Cu+–Cu+

distance. Dc conductivity, characteristic onset frequency and Havriliak–Negami characteristics

relaxation times are thermally activated above −40 ◦C for x = 0.835. The associated

activation energies obtained from dc and ac conductivity and from impedance and modulus

losses are similar and show that CuFe1−xCrxO2 delafossite powders satisfy the BNN relation.

Dc and ac conductivities have the same transport mechanism, namely thermally activated

nearest neighbour hopping and tunnelling hopping above and below −40 ◦C, respectively.

1. Introduction

For more than 30 years, delafossite compounds have been

studied for their unusual magnetic and electrical properties

[1–3]. More recently, delafossite compounds have attracted

much attention since Kawazoe et al [4] showed that CuAlO2
was a good candidate for p-type transparent conducting oxides

(TCO). The development of p-type TCO is one of the most

crucial technologies for p–n junction-based devices such as

transparent solar cells and transparent light-emitting diodes.

Among various materials, copper metal oxide with the molar

ratio Cu/M = 1, i.e. CuMO2, with M = {Al, Ga, Cr, . . . }

and with a delafossite structure has been known as one of

the p-type TCO materials for potential industrial applications.

Several CuMO2 thin films have been reported with different

conductivities and transparencies [5–9].

The CuMO2 structure can be described as a stacking,

along the c-axis, of edge-shared MO6 octahedra forming

MO2 layers. These MO2 layers are connected together with

triangular metallic planes of monovalent copper. Each Cu+

cation is linearly coordinated with two O2− anions of upper

and lowerMO2 layers as seen in figure 1. The oxygen layers

can be stacked in different ways along the c-axis, leading to

two polytypes of the delafossite structure: the hexagonal 2H

(space group P63/mmc) and the rhombohedral 3R (space group

R-3m) polytypes.

CuFeO2 delafossite is a well-known p-type semi-

conductor. At room temperature, the highest electrical

conductivity (σRT = 2 S cm−1) [1, 10] among the CuMO2
delafossite series is obtained with p-type CuFeO2 delafossite

when an off-stoichiometric CuFeO2+δ phase is formed. This

electrical conductivity can also be improved by magnesium

doping up to 30 S cm−1 for CuFe0.98Mg0.02O2 [10, 11].

In the CuMO2 compounds, the transport properties are

mainly governed by the copper mixed valency CuI/CuII

[12, 13]. In CuFeO2+δ and CuFe1−xMgxO2, this Cu
I/CuII

ratio is, respectively, controlled by the oxygen non-

stoichiometry value δ according to (Cu+1−2δCu
2+
2δ )FeO2+δ

[14], and the Fe-site doping stoichiometry x according to

(Cu+1−xCu
2+
x )(Cr3+1−xMg

2+
x )O2. Moreover, CuFeO2 can be

deposited in thin film form by the radio-frequency sputtering

method at low temperature on conventional glass [15], and then

accordingly presents a real interest for industrial applications.

CuCrO2 delafossite is also a p-type semiconductor but

with a lower intrinsic electrical conductivity (σRT = 3.5 ×

10−5 S cm−1) [9] due to the difficulties in intercalating oxygen
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Figure 1. CuMO2 delafossite structure.

(This figure is in colour only in the electronic version)

into the stoichiometric delafossite structure [16]. However, the

electrical conductivity can also be improved up to 220 S cm−1

with appropriate M-site doping as in CuCr0.95Mg0.05O2 thin

film [8], by the same way as with CuFeO2.

As a result, CuFe1−xCrxO2 :Mg solid solution is

particularly attractive due to the potential merge of the

low temperature deposition process of the p-type CuFeO2
delafossite and the optimized p-type TCO properties of

CuCrO2 :Mg.

Previously, we studied the phase stability and thermal

behaviour of the CuFe1−xCrxO2 (0 6 x 6 1) solid solution

by thermogravimetric analysis (TGA) and high-temperature

XRD under an air atmosphere up to 1000 ◦C in order to

characterize the oxygen intercalation [16]. For 0 6 x < 1, two

oxidations were observed. A slight oxidation appears between

400 and 500 ◦C, leading oxygen intercalation in the Cu+ layers.

An off-stoichiometric (Cu+1−2δCu
2+
2δ )Fe1−xCrxO2+δ delafossite

phase is then formed. Above 500 ◦C, a phase transition

occurs; the delafossite phase is transformed into spinel and

CuO phases. For x = 1, i.e. CuCrO2, the delafossite phase is

thermally stable in air up to 1000 ◦C.

In this paper, the electrical properties of CuFe1−xCrxO2 :

Mg (0 6 x 6 1) solid solutions were studied by dielectric

spectroscopy in order to observe the effect of the substitution of

Fe byCr on theM-site on the electrical conductionmechanism.

2. Experimental section

Polycrystalline samples of CuFe1−xCrxO2 (0 6 x 6 1) doped

with 3% of Mg were prepared by a conventional solid-state

Figure 2. Angular frequency dependence of the real part σ ′ of the
complex conductivity at room temperature (25 ◦C) for different x:
(¥) x = 0; (◦) x = 0.165; (N) x = 0.333; (✳) x = 0.5; (♦)
x = 0.667; (H) x = 0.835; (✰) x = 1. The solid lines represent the
fit of experimental data using (1). The inset represents the x
dependence of exponent n.

reaction from stoichiometric mixtures of Cu2O, Fe2O3, Cr2O3
and MgO commercial powders. Mg content is fixed to 3% in

order to avoid the precipitation of the secondary phases [17].

The obtained mixtures were heated in a nitrogen atmosphere

between 900 and 1000 ◦C for 30 h with intermittent grindings.

Then, the powders were pressed into pellets and sintered at

1050 ◦C in neutral atmosphere for 10 h.

Electrical conductivity measurements were performed

by recording the complex impedance Z∗(ω) and complex

conductivity σ ∗(ω) using a Novocontrol broadband dielectric

spectrometer. The measurements were done in the frequency

range from 10−2 to 106 Hz at room temperature and in the

temperature range from −100 to 150 ◦C. The real part, σ ′(ω),

of the complex conductivity was investigated. The ac output

voltage was adjusted to 1.5V. For all the samples considered in

this study, the phase lag between the measured impedance and

the applied ac voltage was negligible at low frequencies, so

that the reported impedance at 0.01Hz is equivalent to the dc

resistance. The dc conductivity σdc of samples was determined

from the independent frequency part of σ ′(ω) (low frequency

plateau).

The powder samples were enclosed in a Teflon sample

holder between two circular stainless steel electrodes (10mm

in diameter). The sintered samples 1.6mm thick were

placed between two circular gold platted electrodes (10mm

in diameter). To reduce contact resistance with the cell

electrodes, a thin layer of gold (100 nm) was sputtered onto

both sides of the pellets using a BOC Edwards scancoat six

SEM sputter coater.

3. Results and discussion

3.1. Dc and ac conductivity

Figure 2 shows the frequency dependence of the real part,

σ ′(ω) of the complex electrical conductivity, for Mg-doped
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Table 1. Dc conductivity σdc, characteristic onset frequency ωc and
exponent n, using (1), for different CuFe1−xCrxO2 delafossite
powders at room temperature.

σdc (S cm
−1) ωc(s

−1) n

CuFeO2 :Mg 9.3× 10−8 2.3× 105 0.92
CuFe0,835Cr0,165O2 :Mg 7.2× 10−8 1.8× 105 0.97
CuFe0,667Cr0,333O2 :Mg 2.3× 10−7 3.5× 105 0.89
CuFe0,5Cr0,5O2 :Mg 5.6× 10−7 4.8× 105 0.70
CuFe0,333Cr0,667O2 :Mg 4.0× 10−7 2.8× 105 0.66
CuFe0,165Cr0,835O2 :Mg 5.1× 10−7 4.0× 105 0.65
CuCrO2 :Mg 1.4× 10−6 8.4× 105 0.64

CuFe1−xCrxO2 powders at room temperature (25 ◦C). At

low frequencies, σ ′(ω) is independent of the electric field

frequency. Above a characteristic onset angular frequency

ωc, the ac conductivity increases with increasing angular

frequency and obeys a power law. Then, the angular frequency

dependence of the total ac conductivity is well described by

the following equation:

σ ′(ω) = σ(0) + Aωn
= σdc

[

1 +

(

ω

ωc

)n]

, (1)

where σdc is the independent frequency conductivity or dc

conductivity, A = ω−n
c σdc is a pre-exponential factor and n

is an exponent dependent on both frequency and temperature

in the range 0 < n 6 1. This behaviour is characteristics of

the charge transport in disordered materials and interpreted by

Jonscher [18] as universal dynamic response (UDR). However

a value of n > 1 was reported in ion-conducting glasses

[19], ionic crystals [20, 21] and underlined by Papathanassiou

et al [22, 23] in a new approach of the universal power law in

disorderedmaterials. The experimental σ ′(ω) conductivity for

CuFe1−xCrxO2 powders were fitted using (1). The best fits of

the conductivity spectra at room temperature for 0 6 x 6 1

are shown as solid lines in figure 2. The dc conductivity σdc,

the crossover frequency ωc and the exponent n were obtained

by a non-linear fitting procedure and reported in table 1. The

variation of the dc conductivity with x is shown in figure 3. As

expected the conductivity increases weakly with x, only one

decade in magnitude, because the progressive substitution of

Fe3+ by Cr3+ reduces the distance Cu+–Cu+ in CuFe1−xCrxO2.

The inset in figure 3 shows the variation of the power law

exponent n with x. The exponent n decreases from 0.92 for

CuFeO2 (x = 0) to 0.65 for CuCrO2 (x = 1) and a sharp

decrease is observed above x = 0.5. This behaviour can be

comparedwith the decrease in particles sizes ofCuFe1−xCrxO2
solid solution with increasing x [16]. The substitution of Fe3+

by Cr3+ leaded to contraction of unit cell, and reduction in

lattice parameter a. The lower value of n above x = 0.5

indicates that the dispersion of ac conductivity with frequency

is reduced with the introduction of large amount of Cr at the

Fe site. This behaviour may be correlated with the change in

the distance and barrier height of the sites available for charge

carriers for electrical conduction. The decrease in the lattice

parameter a in the plane of the Cu atoms and the increased

overlap between Cu+(3d10) with increasing x are responsible

for the observed n decrease through a reinforcement of the

interaction between Cu+ ions.

Figure 3. x dependence of: ( ) dc conductivity; (⋆) characteristic
relaxation time τ ∗

Z from impedance plot; (N) characteristic
relaxation time τ ∗

M from dielectric modulus plot; (◦) reciprocal
characteristic onset frequency ω−1

c .

Figure 4. Composition dependence of the ratio (−LnA/n) in
CuFe1−xCrxO2 delafossite at room temperature.

The ac conductivity is dependent on the stoichiometric

parameter x as the dc conductivity and does not obey a

scaling with x, i.e. no scaling law is obtained for all the

CuFe1−xCrxO2 delafossite when the reduced conductivity

σ ′(ω)/σdc is plotted against the reduced frequency ωr = axω

where ax = [ω(x)/ω(x = 1)] is a shift factor depending on

x, i.e. all the conductivity curves at constant x do not fall onto

one master curve. The shape of the frequency dependence of

the ac conductivity is then dependent on x as dc conductivity

and the onset frequency.

According to the revision of the universal power law

dispersion of ac conductivity in disordered solids proposed

by Papathanassiou [22], the ratio −LnA/n is reported as a

function of x in figure 4. This ratio is near constant because the

weak change in the dc conductivity value with the substitution

of Fe3+ by Cr3+. Such behaviour, i.e. −LnA/n independent

of composition, was observed in ion-conducting glasses [19].

The effect of Cr substitution on the conduction relaxation

mechanism of CuFe1−xCrxO2 powder was also investigated

by the complex impedance Z∗(ω) and complex dielectric

modulus M∗ (ω as a function of angular frequency and
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Figure 5. Angular frequency dependence of: the real part σ ′ of the
complex conductivity for: (•) x = 0; (⋆) x = 1 and the imaginary
part Z′′

s of the complex impedance for: (◦) x = 0; (✰) x = 1. The
inset shows the correlation between the characteristic onset
frequency ωc and the dc conductivity for x = 0.335. The solid line
represents the least-squares linear fits to BNN relation (6).

temperature. Electrical modulus formalism was used in

conductive materials to distinguish a frequency domain within

the charge transport that is long range and above which is

localized since it emphasizes bulk properties compared with

the interfacial polarization. The frequency dependence of

the imaginary part’ of Z∗(ω), Z′′(ω) is shown in figure 5 for

CuFeO2 (x = 0) to andCuCrO2 (x = 1) and comparedwith the

σ ′(ω) behaviour. The relaxation conduction of charge carriers

is represented by well-defined loss peaks in Z′′(ω) and no

such corresponding peak in the imaginary part of the complex

dielectric permittivity ε′′(ω) occurs. The maximum of the

Z′′ spectrum, occurring in the high frequency range part of

the experimental frequency range [10−2–106 Hz], is associated

with the contribution of the bulk property of the material. Let

τZ be the relaxation times obtained from the impedance plot.

The absence of a ε′′ loss peak together with the equivalence

ω−1
c ≈ τZ signify long range charge carriers diffusion. The

conduction relaxation mechanism in CuFe1−xCrxO2 powder

is also investigated by analysing electrical loss modulus M ′′

as a function of frequency and temperature. The imaginary

part of modulus spectra is reported in figure 6 for x = 0 to

and x = 1 and compared with Z′′ spectra. The M ′′ spectrum

exhibits one main peak as the Z′′ spectrum. It is important

to note that M ′′ maxima are at higher frequency with respect

to Z′′ maxima. Let τM be the relaxation times obtained from

the modulus plot. The relatively large width and asymmetrical

nature of the Z′′ andM ′′ peaks at room temperature indicate a

non-Debye behaviour of the conduction relaxation process. In

order to follow the effect of the substitution of Fe3+ by Cr3+ on

relaxation times, Havriliak–Negami (HN) empirical equation

was used to describe the frequency dependence of the shape

of the Z′′ andM ′′ peaks as follows:

Z∗

s = Z′

s − iZs
′′

=

Rs

[1 + (iωτ ∗

Z)α]β
, (2)

M∗
= M ′ + iM ′′

= M∞ −

(M∞ − M0)

[1 + (iωτ ∗

M)α]β
, (3)

Figure 6. Angular frequency dependence of: the imaginary part Z′′

s

of the complex impedance for: (◦) x = 0; (✰) x = 1 and the
imaginary partM ′′ of the complex dielectric modulus for: (•)
x = 0; (⋆) x = 1. Data points are connected to guide the eye.

where τ ∗

Z and τ ∗

M are theHNcharacteristics relaxation time, and

α andβ the parameters describing the distribution of relaxation

time. The parameters describing the conduction relaxation

for the different CuFe1−xCrxO2 samples are listed in table 2.

The variation of ω−1
c , τ

∗

Z and τ ∗

M with x at room temperature

is reported in figure 3. The three representations of the

conduction relaxation show that the characteristics relaxation

time decreases with increasing x. The magnitude of Z′′ is

founded to decrease as x increases, becauseRs decreases. This

result is in good agreement with the shortening of the distance

between Cu sites as x increases.

The frequency behaviour of the ac conductivity at different

temperatures for x = 0.835 is reported in figure 7. As expected

for semiconductor behaviour, σdc increases with increasing

temperature. Figure 8 displays the temperature dependence

of the dc conductivity data in an Arrhenius plot for x = 0.835.

The activation energy for the thermally activated conduction

process is obtained by fitting the dc conductivity data with the

Arrhenius relation:

σdc = σ0 exp

(

−

Eσ

kBT

)

, (4)

where σ0 is the pre-exponential factor and Eσ is the activation

energy for dc conductivity. As can be seen, only the data

from −30 ◦C to about 150 ◦C can be well linearized in this

representation with Eσ = 0.43 eV and σ0 = 1905 S cm−1.

In the UDR the onset frequency or the crossover

frequency ωc from the dc regime at low frequencies to

the dispersive regime is also the hopping frequency ωh.

The frequency behaviour of ac conductivity as a power

law was largely observed in many other low mobility

oxides amorphous semiconductors and disordered systems

and attributed to the hopping of charge carriers between sites

having variable heights and separation distances. To correlate

dc and ac conductivities, the temperature dependence of the

hopping frequency ωh is compared with the corresponding

dc conductivity behaviour in figure 8. As expected the
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Table 2. Number density of Cu sites NCu, Cu–Cu distance (a-axis lattice parameter), number density of effective charge carrier density Nc

using (8) and charge carrier mobility µ using (9) for different powders at room temperature.

NCu (m
−3) a (Å) [16] Nc (m−3) µ(m−2 V−1 S−1)

CuFeO2 :Mg 2.19× 1028 3.0344 2.64× 1027 2.2× 10−14

CuFe0,835Cr0,165O2 :Mg 2.21× 1028 3.0268 2.65× 1027 1.7× 10−14

CuFe0,667Cr0,333O2 :Mg 2.22× 1028 3.0159 4.38× 1027 3.3× 10−14

CuFe0,5Cr0,5O2 :Mg 2.24× 1028 3.0055 7.82× 1027 4.5× 10−14

CuFe0,333Cr0,667O2 :Mg 2.26× 1028 2.9942 9.65× 1027 2.6× 10−14

CuFe0,165Cr0,835O2 :Mg 2.28× 1028 2.9826 8.68× 1027 3.7× 10−14

CuCrO2 :Mg 2.29× 1028 2.9742 1.14× 1028 7.7× 10−14

Figure 7. Angular frequency dependence of the real part σ ′ of the
complex conductivity at different temperatures between −100 and
150 ◦C: (¥) −100 ◦C; (◦) −60 ◦C; (N) −20 ◦C; (▽) 40 ◦C; (¨)
80 ◦C; (⊳) 120 ◦C; (✰) 150 ◦C for x = 0.835.

Figure 8. Dc conductivity σdc (¨) and characteristic onset frequency
ωc (◦) as a function of reciprocal temperature for x = 0.835. Solids
lines represent the fit of experimental data using (4) and (5).

crossover frequency is also thermally activated and ωh obeys
an Arrhenius equation:

ωc ≡ ωh = ωh0 exp

(

−

Eh

kBT

)

(5)

with an activation energy valueEh = 0.36 eVclose to the value
of Eσ . The value of the corresponding characteristic hopping
attempt frequencyωh0 = 1013 s−1 is close to the lattice phonon

frequency such as the inverse pre-exponential factor 1/τ0Z,M .
It is well known that, in most conductive materials, σdc and
ωh satisfy the Barton–Nakajima–Namikawa (BNN) relation
[24–26], i.e.

σdc = pε01εωc, (6)

where p is a constant of order 1, 1ε is the dielectric strength
and ε0 is the permittivity of free space. σdc andωh are thermally
activated with nearly the same activation energy. The inset in
figure 5 shows the log σdc versus log ωh for x = 0.5. The solid
line is the least-squares straight-line fit and gives a slope of
1.16 close to unity in good agreement with the BNN relation
σdc ∼ ωh. It can be concluded that dc and ac conductions
are correlated with each other in CuFe1−xCrxO2 delafossite
and that they are governed by the same transport mechanism,
namely thermally activated nearest neighbour hopping.

At the lower temperature range, below −40 ◦C, the dc
conductivity is independent of the temperature. The thermally
activated behaviour for conduction in the temperature range
[−30, 150 ◦C] is confirmed by analysing the temperature
dependence of τ ∗

Z and τ ∗

M . It is clear that the relaxation
times predicted by each empirical equation show an activated
behaviour, i.e. obey the Arrhenius equation:

τ ∗

z,M = τ0Z,M exp

(

EaZ,M

kBT

)

, (7)

whereEa is the activation energy and τ0 is the high-temperature
limit of the relaxation time. The best fit to (7) gives EaZ =

0.35 eV and EaM = 0.39 eV which corresponds to the value
of dc conduction activation energy Eσ . This result indicates
that charge carrier has to overcome the same energy barrier
while conducting as well as relaxing. The mechanism of
electrical conduction is the same as that of dielectric relaxation
in CuFe1−xCrxO2 powder. As expected from the observed dc
conductivity temperature behaviour,ωc and τ ∗

Z are independent
of the temperature below −40 ◦C.

In hopping transport, we can use the relationship between
the dc conductivity σdc and the hopping frequency ωh [27],

σdc =

(

Nce
2r2h

12πkBT

)

ωh, (8)

where rh is the hopping distance (i.e. the Cu–Cu distance

a [16]) and Nc is the number density of effective charge

carrier. Using (8), Nc can be evaluated at room temperature

and compared with the number density of Cu sites in

CuFe1−xCrxO2 delafossite. As shown in table 2, Nc increases

5



Figure 9. Characteristic onset frequency ωc (◦) and characteristic
relaxation time τ ∗

Z (⋆) as a function of reciprocal temperature for
x = 0.835. Solids lines represent the fit of experimental data using
(5) and (7).

Figure 10. Variation of the exponent n with temperature for
x = 0.835. The inset shows the temperature dependence of the ratio
(−LnA/n).

with x and the value is close to NCu for CuCrO2 (x = 1)

as expected, if one takes into account that the charge carrier

hopping probability is necessarily reduced to some extent in

the real delafossite powder. Fromσdc andNc, the charge carrier

mobility µ can be obtained using

µ =

σdc

eNc

(9)

and is reported in table 2.

To complete the temperature behaviour of ac conductivity,

the temperature dependence of the frequency exponent n for

x = 0.835 is shown in figure 9. The value of n calculated from

(1) in figure 10 decreases with increasing temperature from

−30 to 50 ◦C and is increasing above 80 ◦C. The temperature

dependence of n, at low temperature up to −10 ◦C, is weak

compared with the variation above 0 ◦C. This behaviour

suggests that relaxation processes and conduction mechanism

at low temperature are linked to tunnelling of charge carriers.

This result is in agreement with the weak activation energy

measured below−40 ◦C using the temperature dependence of

dc conductivity; impedance and loss modulus (see figures 8

and 9).

According to Dyre et al [28] presentation of a review

on ac hopping conduction, the temperature dependence of

the parameter n was explained on the basis of the many

body interaction models. At low temperatures the interaction

between the neighbouring charge carriers is almost negligible.

As the temperature increases, the interaction increases, leading

to a decrease in n. The universal power law dependence

of ac conductivity on the frequency corresponds to the short

range hopping of charge carriers between the sites separated

by energy barriers of varied heights. If hopping takes place

between a random distribution of localized charge states, it

then lies between 0.5 and 1 as observed in CuFe1−xCrxO2
delafossite. The lower value of n occurs for multiple hops

while the higher value occurs for single hops. Theoretical

models have been proposed to correlate the conduction

mechanism of ac conductivity with n(T ) behaviour. If n

increases with temperature, a small polaron is the predominant

mechanism, while the correlated barrier hopping (CBH) is

characterized by a decrease in nwith temperature [29]. Benko

et al [2] assumed the conduction mechanism by hopping of

small polarons localized on the Cu sites inMg-doped CuFeO2.

Substituting Mg2+ for Fe3+ by Mg doping results in the mixed

valenceCu+/Cu2+and contributes a hole. The calculated carrier

mobility is very low and insufficient to measure the Seebeck

coefficient in sample powders and to display some precise

information about the nature of the involved charge carrier

in the conduction of the CuFe1−xCrxO2 delafossite.

According to Papathanassiou [22] the ratio (LnA/n), in

disordered solids, is independent of the temperature. The

ratio −LnA/n is reported as a function of temperature

in the inset of figure 4. The variation of (−LnA/n) in

delafossite (x = 0.835) is less than 2 orders of magnitude

in the investigated temperature range. This behaviour is in

agreementwith those observed in other experimental data from

ionic conducting glasses or disordered semiconductors and

compiled by Papathanassiou [22].

From the literature, the conductionmechanism in CuCrO2
[8, 30, 31] or CuFeO2 delafossites at low temperature (T <

25 ◦C) is a hopping of holes between the nearest neighbour

Cu sites in Cu layers and a crossover from thermal activation

behaviour to that of 3DVRH occurs at a very low temperature.

As shown in figures 8 and 9, a such VRH behaviour of σdc in

T 0.25 is not observed because σdc ,τ
∗

Z and ωc are independent

of the temperature below −40 ◦C. Hence the charge carrier

transport occurs via tunnelling from Cu atom to another at low

temperature.

4. Conclusion

The electrical conductivity and dielectric behaviour of

Mg-doped CuFe1−xCrxO2 delafossite powders have been

studied by dielectric spectrometry. At room temperature,

the conductivity behaviour is frequency and composition-

dependent and obeys a power law, above the onset frequency
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ωc. In CuFe1−xCrxO2 delafossite no scaling of ac conductivity

has been observed at room temperature at different x. The

Cu+–Cu+ distance has a great influence on electrical properties

of CuFe1−xCrxO2 delafossite. The dc conductivity σdc
increases with increasing x and decreasing Cu–Cu distance.

The behaviour of the exponent n in the power law shows

also a decrease when x increases from 0 to 1. The dc and

ac conductivities are driven by the same mechanism, as the

BNN relation is found to be valid. The same temperature

behaviour is observed for the dc conductivity and the onset

frequency: the activation energy is the same for both ac

and dc conduction, confirming the BNN relation. The

dielectric behaviour of CuFe1−xCrxO2 delafossite powders

has been analysed in the framework of complex impedance

and complex dielectric modulus. The characteristic relaxation

times τ ∗

Z and τ ∗

M extracted from impedance and modulus

losses Z′′(ω) and M ′′(ω), using a HN empirical equation,

are decreasing monotonic functions of x in agreement with

the x dependence of dc conductivity. The observed dielectric

behaviour is characteristic of a conduction relaxation of charge

carriers. Above −40 ◦C, the characteristic relaxation time

τ ∗

Z is thermally activated and the activation energy is close

to the value obtained from dc conductivity for x = 0.835.

The relaxation conduction and dc conduction are governed by

charge carriers hopping from the Cu site to another. At low

temperature, the charge transport occurs via tunnelling.

In delafossite, the ratio LnA/n extracted from the power

law dispersion of the ac conductivity was found to be poorly

dependent on composition and temperature.
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