6 research outputs found

    ISL1 is a major susceptibility gene for classic bladder exstrophy and a regulator of urinary tract development.

    Get PDF
    Previously genome-wide association methods in patients with classic bladder exstrophy (CBE) found association with ISL1, a master control gene expressed in pericloacal mesenchyme. This study sought to further explore the genetics in a larger set of patients following-up on the most promising genomic regions previously reported. Genotypes of 12 markers obtained from 268 CBE patients of Australian, British, German Italian, Spanish and Swedish origin and 1,354 ethnically matched controls and from 92 CBE case-parent trios from North America were analysed. Only marker rs6874700 at the ISL1 locus showed association (p = 2.22 × 10-08). A meta-analysis of rs6874700 of our previous and present study showed a p value of 9.2 × 10-19. Developmental biology models were used to clarify the location of ISL1 activity in the forming urinary tract. Genetic lineage analysis of Isl1-expressing cells by the lineage tracer mouse model showed Isl1-expressing cells in the urinary tract of mouse embryos at E10.5 and distributed in the bladder at E15.5. Expression of isl1 in zebrafish larvae staged 48 hpf was detected in a small region of the developing pronephros. Our study supports ISL1 as a major susceptibility gene for CBE and as a regulator of urinary tract development

    IGLL5 controlled by super-enhancer affects cell survival and MYC expression in mature B-cell lymphoma

    No full text
    IGLL5 is shown to be located near super-enhancer (SE) in B-cell tumors, and this gene is frequently mutated and a target of translocation in B-cell tumors. These results suggest roles of the IGLL5 in tumorigenesis; however, its functional properties have been unclear. We found that two mature B-cell lymphoma cell lines expressed IGLL5 mRNA with Cλ1 segment. JQ1 treatment resulted in down-expression of IGLL5, indicating that IGLL5 is controlled by SE. IGLL5 knockdown induced cell death with down-expression of MYC. Our results suggested that IGLL5 might have a role in survival of mature B-cell tumors and involvement in MYC expression. (100 words

    Chimeric efferocytic receptors improve apoptotic cell clearance and alleviate inflammation

    No full text
    Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis."Defects in efferocytosis are now linked to various inflammatory diseases. Here, we de-signed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis"(CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidyl-serine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation

    Regulation of masculinization: androgen signalling for external genitalia development

    No full text
    corecore