62 research outputs found

    The Effect of Inner Grooved Tubes on the Heat Transfer Performace of Air-Cooled Heat Exchangers of Co2 Heat Pump System

    Get PDF
    In the CO2 heat pump system, Poly alkyl glycol (PAG) oil is commonly used for lubrication of the compressor, while it is reported that the PAG oil has influence on the heat transfer performance due to its immiscibility against CO2 within its working condition. Experimental work has been carried out to investigate the heat transfer performance of fin and tube heat exchangers using CO2 as a refrigerant with taking PAG oil into account. From previous study it was found that the heat transfer performance decreased significantly in both evaporator and gascooler conditions when oil was mixed. The present work presents experimental results on three types of air-cooled heat exchangers with smooth and inner grooved tubes. It was found that the deterioration ratio of heat transfer performance with oil was different depending on the inner surface geometry of the grooved tubes. To understand this, flow visualization inside these tubes has also been carried out through transparent section made of glass, which can withstand high pressure. It was confirmed that the oil behavior inside tubes was related to heat transfer performance. Heat transfer performance can be improved by using inner grooved tubes with the optimal pattern to remove oil away from inner surface. These tubes are effective to develop high performance heat exchangers for the CO2 heat pump system

    Bioprinting and biomaterials for dental alveolar tissue regeneration

    Get PDF
    Three dimensional (3D) bioprinting is a powerful tool, that was recently applied to tissue engineering. This technique allows the precise deposition of cells encapsulated in supportive bioinks to fabricate complex scaffolds, which are used to repair targeted tissues. Here, we review the recent developments in the application of 3D bioprinting to dental tissue engineering. These tissues, including teeth, periodontal ligament, alveolar bones, and dental pulp, present cell types and mechanical properties with great heterogeneity, which is challenging to reproduce in vitro. After highlighting the different bioprinting methods used in regenerative dentistry, we reviewed the great variety of bioink formulations and their effects on cells, which have been established to support the development of these tissues. We discussed the different advances achieved in the fabrication of each dental tissue to provide an overview of the current state of the methods. We conclude with the remaining challenges and future needsThis work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Numbers 22K18936 and 21K04852); AMED (Grant Number JP21gm1310001); The JST Adaptable and Seamless Technology Transfer Program through Target-driven R&D (Grant Number JPMJTM22BD), CASIO SCIENCE PROMOTION FOUNDATION, and by the Research Center for Biomedical Engineering at Tokyo Medical and Dental University, Japan

    A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue

    Get PDF
    Engineered skeletal muscle tissues are ideal candidates for applications in drug screening systems, bio-actuators, and as implantable constructs in tissue engineering. Electrical field stimulation considerably improves the differentiation of muscle cells to muscle myofibers. Currently used electrical stimulators often use direct contact of electrodes with tissue constructs or their culture medium, which may cause hydrolysis of the culture medium, joule heating of the medium, contamination of the culture medium due to products of electrodes corrosion, and surface fouling of electrodes. Here, we used an interdigitated array of electrodes combined with an isolator coverslip as a contactless platform to electrically stimulate engineered muscle tissue, which eliminates the aforementioned problems. The effective stimulation of muscle myofibers using this device was demonstrated in terms of contractile activity and higher maturation as compared to muscle tissues without applying the electrical field. Due to the wide array of potential applications of electrical stimulation to two- and three-dimensional (2D and 3D) cell and tissue constructs, this device could be of great interest for a variety of biological applications as a tool to create noninvasive, safe, and highly reproducible electric fields.World Premier International Research Center Initiative (WPI

    Organ-on-a-chip platforms for drug screening and delivery in tumor cells: a systematic review

    Get PDF
    The development of cancer models that rectify the simplicity of monolayer or static cell cultures physiologic microenvironment and, at the same time, replicate the human system more accurately than animal models has been a challenge in biomedical research. Organ-on-a-chip (OoC) devices are a solution that has been explored over the last decade. The combination of microfluidics and cell culture allows the design of a dynamic microenvironment suitable for the evaluation of treatments’ efficacy and effects, closer to the response observed in patients. This systematic review sums the studies from the last decade, where OoC with cancer cell cultures were used for drug screening assays. The studies were selected from three databases and analyzed following the research guidelines for systematic reviews proposed by PRISMA. In the selected studies, several types of cancer cells were evaluated, and the majority of treatments tested were standard chemotherapeutic drugs. Some studies reported higher drug resistance of the cultures on the OoC devices than on 2D cultures, which indicates the better resemblance to in vivo conditions of the former. Several studies also included the replication of the microvasculature or the combination of different cell cultures. The presence of vasculature can influence positively or negatively the drug efficacy since it contributes to a greater diffusion of the drug and also oxygen and nutrients. Co-cultures with liver cells contributed to the evaluation of the systemic toxicity of some drugs metabolites. Nevertheless, few studies used patient cells for the drug screening assays.This work has been supported by the projects NORTE-01-0145-FEDER-030171 (project reference PTDC/EME-SIS/30171/2017), NORTE-01-0145-FEDER-029394 (project reference PTDC/EMDEMD/29394/2017), through the COMPETE2020, the Lisb@2020, the Programa Operacional Regional do Norte–Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement through the European Regional Development Fund (FEDER) and by Fundação para a Ciência e Tecnologia (FCT), and through FEDER and FCT, project references EXPL/EMD-EMD/0650/2021 and PTDC/EEI-EEE/2846/2021. The authors also acknowledge the partial financial support within the R&D Units Project Scope: UIDB/00319/2020, UIDB/04077/2020, UIDB/00690/2020, UIDB/04436/2020. This work was also funded by AMED-CREST Grant Number JP20gm1310001h0002. Raquel O. Rodrigues (R.O.R.) thanks FCT for her contract funding provided through 2020.03975.CEECIND

    3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review

    Get PDF
    Three-dimensional (3D) in vitro models, such as organ-on-a-chip platforms, are an emerging and effective technology that allows the replication of the function of tissues and organs, bridging the gap amid the conventional models based on planar cell cultures or animals and the complex human system. Hence, they have been increasingly used for biomedical research, such as drug discovery and personalized healthcare. A promising strategy for their fabrication is 3D printing, a layer-by-layer fabrication process that allows the construction of complex 3D structures. In contrast, 3D bioprinting, an evolving biofabrication method, focuses on the accurate deposition of hydrogel bioinks loaded with cells to construct tissue-engineered structures. The purpose of the present work is to conduct a systematic review (SR) of the published literature, according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, providing a source of information on the evolution of organ-on-a-chip platforms obtained resorting to 3D printing and bioprinting techniques. In the literature search, PubMed, Scopus, and ScienceDirect databases were used, and two authors independently performed the search, study selection, and data extraction. The goal of this SR is to highlight the importance and advantages of using 3D printing techniques in obtaining organ-on-a-chip platforms, and also to identify potential gaps and future perspectives in this research field. Additionally, challenges in integrating sensors in organs-on-chip platforms are briefly investigated and discussed.The authors are grateful for the funding of FCT through the projects NORTE-01-0145- FEDER-029394, NORTE-01-0145-FEDER-030171 funded by COMPETE2020, NORTE2020, PORTUGAL2020, and FEDER. This work was also supported by Fundação para a Ciência e a Tecnologia (FCT) under the strategic grants UIDB/04077/2020, UIDB/00319/2020, UIDB/04436/2020 and UIDB/00532/2020. This work was also funded by AMED-CREST Grant Number JP20gm1310001h0002.Violeta Carvalho acknowledges the PhD scholarship UI/BD/151028/2021 attributed by FCT. Inês Gonçalves acknowledges the PhD scholarship BD/08646/2020 attributed by FCT

    Relationship between Barthel Index scores during the acute phase of rehabilitation and subsequent ADL in stroke patients

    Get PDF
    The Barthel Index (BI) cannot be used to measure initial stroke severity or by extension, to stratify patients by severity in acute stroke trials because most patients are bedbound in the first few hours after stroke, either by their deficit or by medical directive. Our objectives were to clarify the threshold of acute BI for use in the prediction of subsequent independence in activities of daily living (ADL) and to assist in the definition of acute stroke rehabilitation goals. Subjects comprised 78 patients out of 191 inpatients admitted with acute stroke at our hospital during 2006-2007. The BI ADL score was divided into 2 ranges (BI≧60 and≦40), in a process similar to previous studies. During the acute period (from onset to approximately 3 weeks), all patients with a BI≧40 could improve their ADL in 6 months. Patients with a BI≦40 exhibited two ADL recovery outcomes (improved and no change) at 6 months. We also found that the skill level of basic activities related to standing was significant indicator of BI improvement (P<0.001). BI scores determined at approximately 3 weeks were reliable predictors of ADL disabilities at 6 months

    発症早期ALS患者に対する超高用量メチルコバラミンの有効性・安全性について : ランダム化比較試験

    Get PDF
    Importance: Post hoc analysis in a phase 2/3 trial indicated ultra-high dose methylcobalamin slowed decline of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) total score at week 16 as well as at week 182, without increase of adverse events, in patients with amyotrophic lateral sclerosis (ALS) who were enrolled within 1 year from onset. Objective: To validate the efficacy and safety of ultra-high dose methylcobalamin for patients with ALS enrolled within 1 year of onset. Design: A multicenter, placebo-controlled, double-blind, randomized phase 3 trial with 12-week observation and 16-week randomized period, conducted from October 2017 to September 2019. Setting: Twenty-five neurology centers in Japan. Participants: Patients with ALS diagnosed within 1 year of onset by the updated Awaji criteria were initially enrolled. Of those, patients fulfilling the following criteria after 12-week observation were eligible for randomization: 1- or 2-point decrease in ALSFRS-R total score, a percent forced vital capacity over 60%, no history of noninvasive respiratory support and tracheostomy, and being ambulant. The target number was 64 in both methylcobalamin and placebo groups. Of 203 patients enrolled in the observation, 130 patients (age, 61.0 ± 11.7 years; female, 56) met the criteria and were randomly assigned through an electronic web-response system to methylcobalamin or placebo (65 for each). Of these, 129 patients were eligible for the full analysis set, and 126 completed the double-blind stage. Interventions: Intramuscular injection of methylcobalamin 50 mg or placebo twice weekly for 16 weeks. Main outcomes and measures: The primary endpoint was change in ALSFRS-R total score from baseline to week 16 in the full analysis set. Results: The least-squares mean difference in ALSFRS-R total score at week 16 of the randomized period was 1.97 points greater with methylcobalamin than placebo (−2.66 versus −4.63; 95% CI, 0.44–3.50; P = 0.012). The incidence of adverse events was similar between the two groups. Conclusions and relevance: Ultra-high dose methylcobalamin was efficacious in slowing functional decline and safe in the 16-week treatment period in ALS patients in the early stage and with moderate progression rate. Trial registration: UMIN-CTR Identifier: UMIN000029588 (umin.ac.jp/ctr); ClinicalTrials.gov Identifier: NCT03548311 (clinicaltrials.gov

    Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon

    Get PDF
    Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10−/−, Tlr2−/−, and Myd88−/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra−/− T cells. B. breve treatment of Tlr2−/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10−/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells
    corecore