11,176 research outputs found

    Symmetrization and enhancement of the continuous Morlet transform

    Full text link
    The forward and inverse wavelet transform using the continuous Morlet basis may be symmetrized by using an appropriate normalization factor. The loss of response due to wavelet truncation is addressed through a renormalization of the wavelet based on power. The spectral density has physical units which may be related to the squared amplitude of the signal, as do its margins the mean wavelet power and the integrated instant power, giving a quantitative estimate of the power density with temporal resolution. Deconvolution with the wavelet response matrix reduces the spectral leakage and produces an enhanced wavelet spectrum providing maximum resolution of the harmonic content of a signal. Applications to data analysis are discussed.Comment: 12 pages, 8 figures, 2 tables, minor revision, final versio

    Microscopic optical potential from chiral nuclear forces

    Full text link
    The energy- and density-dependent single-particle potential for nucleons is constructed in a medium of infinite isospin-symmetric nuclear matter starting from realistic nuclear interactions derived within the framework of chiral effective field theory. The leading-order terms from both two- and three-nucleon forces give rise to real, energy-independent contributions to the nucleon self-energy. The Hartree-Fock contribution from the two-nucleon force is attractive and strongly momentum dependent, in contrast to the contribution from the three-nucleon force which provides a nearly constant repulsive mean field that grows approximately linearly with the nuclear density. Together, the leading-order perturbative contributions yield an attractive single-particle potential that is however too weak compared to phenomenology. Second-order contributions from two- and three-body forces then provide the additional attraction required to reach the phenomenological depth. The imaginary part of the optical potential, which is positive (negative) for momenta below (above) the Fermi momentum, arises at second-order and is nearly inversion-symmetric about the Fermi surface when two-nucleon interactions alone are present. The imaginary part is strongly absorptive and requires the inclusion of an effective mass correction as well as self-consistent single-particle energies to attain qualitative agreement with phenomenology.Comment: 12 pages, 7 figures, added references, corrected typo

    Lambda-nuclear interactions and hyperon puzzle in neutron stars

    Full text link
    Brueckner theory is used to investigate the in-medium properties of a Λ\Lambda-hyperon in nuclear and neutron matter, based on hyperon-nucleon interactions derived within SU(3) chiral effective field theory (EFT). It is shown that the resulting Λ\Lambda single-particle potential UΛ(pΛ=0,ρ)U_\Lambda(p_\Lambda =0,\rho) becomes strongly repulsive for densities ρ\rho of two-to-three times that of normal nuclear matter. Adding a density-dependent effective ΛN\Lambda N-interaction constructed from chiral ΛNN\Lambda NN three-body forces increases the repulsion further. Consequences of these findings for neutron stars are discussed. It is argued that for hyperon-nuclear interactions with properties such as those deduced from the SU(3) EFT potentials, the onset for hyperon formation in the core of neutron stars is expected to be shifted to extremely high baryon density, thus potentially resolving the so-called hyperon puzzle.Comment: 6 pages, two figures; longer discussion about uncertainties adde

    Scattering of decuplet baryons in chiral effective field theory

    Full text link
    A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (BB) and decuplet baryons (DD) for the transitions BBBBBB\to BB, BBDBBB\leftrightarrow DB, DBDBDB\to DB, BBDDBB\leftrightarrow DD, DBDDDB\leftrightarrow DD, and DDDDDD\to DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ\Omega\Omega and NΩN\Omega scattering. Implications of our results pertinent to the quest for dibaryons are discussed.Comment: 26 pages, 6 figures; minor corrections in the text, references adde

    Hyperons in nuclear matter from SU(3) chiral effective field theory

    Full text link
    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Lambda and Sigma hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Sigma-nuclear potential and a weak Lambda-nuclear spin-orbit force.Comment: 13 pages, 10 figures, 5 tables; v2: published version, minor change

    ppppωpp\to pp\omega reaction near threshold

    Full text link
    We analyze the total cross section data for ppppωpp \to pp\omega near threshold measured recently at SATURNE. Using an effective range approximation for the on-shell pppp S-wave final state interaction we extract from these data the modulus Ω=0.53|\Omega| = 0.53 fm4^4 of the threshold transition amplitude Ω\Omega. We present a calculation of various (tree-level) meson exchange diagrams contributing to Ω\Omega. It is essential that ω\omega-emission from the anomalous ωρπ\omega\rho\pi-vertex interferes destructively with ω\omega-emission from the proton lines. The contribution of scalar σ\sigma-meson exchange to Ω\Omega turns out to be negligibly small. Without introducing off-shell meson-nucleon form factors the experimental value Ω=0.53|\Omega|=0.53 fm4^4 can be reproduced with an ωN\omega N-coupling constant of gωN=10.7g_{\omega N}=10.7. The results of the present approach agree qualitatively with the J\"ulich model. We also perform a combined analysis of the reactions ppppπ0,pnπ+,ppη,ppωpp\to pp\pi^0, pn\pi^+, pp\eta, pp\omega and pnpnηpn\to pn\eta near threshold.Comment: Latex-file 6 pages, 2 Figure

    Handy Equipment for Swine Raising

    Get PDF
    Plans, construction details, bills of material, and estimates of cost for a number of items of handy and efficient equipment for swine raising are presented in this circular. Ideas have been gathered from many and diverse sources, particularly from the farms of progressive swine men. Practically all of the plans submitted have been thoroly tested in actual practice. Many of the items have been constructed by the Iowa Agricultural Experiment Station at Ames where they have demonstrated their worth

    Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications

    Get PDF
    The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator

    Electromagnetic inertia, reactive energy, and energy flow velocity

    Full text link
    In a recent paper titled "Coherent electromagnetic wavelets and their twisting null congruences," I defined the local inertia density (I), reactive energy density (R), and energy flow velocity (v) of an electromagnetic field. These are the field equivalents of the mass, rest energy, and velocity of a relativistic particle. Thus R and I are Lorentz-invariant and |v|<=c, with equality if and only if R=0. The exceptional fields with |v|=c were called "coherent" because their energy moves in complete harmony with the field, leaving no inertia or reactive energy behind. Generic electromagnetic fields become coherent only in the far zone. Elsewhere, their energy flows at speeds |v|<c. The purpose of this paper is to confirm and clarify this statement by studying the local energy flow in several common systems: a time-harmonic electric dipole field, a time-dependent electric dipole field, and a standing plane wave. For these fields, the energy current (Poynting vector) is too weak to carry away all of the energy, thus leaving reactive energy in its wake. For the time-dependent dipole field, we find that the energy can flow both transversally and inwards, back to the source. Neither of these phenomena show up in the usual computation of the energy transport velocity which considers only averages over one period in the time-harmonic case.Comment: 20 pages, 7 figure
    corecore