14,081 research outputs found

    A radiometric Bode's Law: Predictions for Uranus

    Get PDF
    The magnetospheres of three planets, Earth, Jupiter, and Saturn, are known to be sources of intense, nonthermal radio bursts. The emissions from these sources undergo pronounced long term intensity fluctuations that are caused by the solar wind interaction with the magnetosphere of each planet. Determinations by spacecraft of the low frequency radio spectra and radiation beam geometry now permit a reliable assessment of the overall efficiency of the solar wind in stimulating these emissions. Earlier estimates of how magnetospheric radio output scales with the solar wind energy input must be revised greatly, with the result that, while the efficiency is much lower than previously thought, it is remarkably uniform from planet to planet. The formulation of a radiometric Bode's Law from which a planet's magnetic moment is estimated from its radio emission output is presented. Applying the radiometric scaling law to Uranus, the low-frequency radio power is likely to be measured by the Voyager 2 spacecraft as it approaches this planet

    Narrow-band Jovian Kilometric Radiation: a New Radio Component

    Get PDF
    A new component of Jupiter's radio spectrum is investigated. The component emits in a very narrow bandwidth (less than or equal to 40 kHz) near 100 kHz. Its waveform is a very smooth and gradual rise and subsequent fall in intensity, usually over two hours. The emission is polarized with left hand polarization associated with the Jovian northern magnetic hemisphere and right hand with the south. The emissions deviation from a strict system 3 rotation period repetition rate is examined. The emission source of the narrow band component which rotates 3 to 5 percent slower than all other forms of Jovian radio emission is determined from propagation considerations, coupled with the observed lack of corotation, to a source region near the equatorial plane at the outer edge of the Io plasma torus. The narrow band KOM (nKOM) form is examined using observations from the PRA instrument. The spectrum and occurrence statistics are described and contrasted with the tapered or broadband KOM (bKOM) characteristics

    The Occurence Rate, Polarization Character, and Intensity of Broadband Jovian Kilometric Radiation

    Get PDF
    The major observational features of one new component of Jupiter's radio emission spectrum, the broadband kilometer-wavelenth radiation or bKOM are described. The Voyager planetary radio astronomy experiments reveal that the overall occurrence morphology, total power, and polarization character of bKOM are strong functions of the latitude and/or local time geometry of the observations. The post-encounter data show a decline in the mean occurrence rates and power level of bKOM and, in particular, a depletion in the occurrence rate at those same longitudes where the detection rate is a maximum before encounter. Additionally, the polarization sense undergoes a permanent reversal in sign after encounter, whereas the time-averaged wave axial ratio and degrees of polarization remain relatively unchanged. No evidence of any control by Io is found. The strong dependence of the morphology on local time suggests a source whose beam is nearly fixed relative to the Jupiter-sun line

    Saturnian kilometric radiation: Source locations

    Get PDF
    The surce locations of both polariation components of the saturn kilometer wavelength radiation were deduced using Voyager 1 and Voyager 2 planetary radio astronomy data and assumptions about radiation beam geometry. Radio source footprints were compared with the surface locations of saturns ultraviolet aurorae, its polar cap boundary, and its polar cusp

    Voyager measurement of the rotation period of Saturn's magnetic field

    Get PDF
    Saturn's radio rotation period was determined using measurements made by the planetary radio astronomy experiment onboard the Voyager spacecraft. The sidereal period deduced, 10 hr 39 min 24 sec ? 7 sec, is within the 10 hr to 11 hr range of optical periods derived from a century of atmospheric spot and Doppler spectroscopy observations. The radio rotation period is presumably that of the planet's magnetic field. A provisional Saturn longitude convention is proposed and equations are provided to compute a longitude ephemeris and to transform between the proposed system and the (10 hr 14 min) system used for the Pioneer 11/Saturn encounter. The degree of longitude smearing which could result over the long term from the merging of data sets organized in this system is evaluated. No evidence of control of the radio emission by any of Saturn's satellites was found

    Evidence for an Io plasma torus influence on high-latitude Jovian radio emission

    Get PDF
    We report the discovery with the Ulysses unified radio and plasma wave (URAP) instrument of features in the Jovian hectometer (HOM) wavelength radio emission spectrum which recur with a period about 2–4% longer than the Jovian System III rotation period. We conclude that the auroral HOM emissions are periodically blocked from “view” by regions in the torus of higher than average density and that these regions rotate more slowly than System III and persist for considerable intervals of time. We have reexamined the Voyager planetary radio astronomy (PRA) data taken during the flybys in 1979 and have found similar features in the HOM spectrum. Contemporaneous observations by Brown (1994) show an [SII] emission line enhancement in the Io plasma torus that rotates more slowly than System III by the same amount as the HOM feature

    Lower critical field measurements in YBa2Cu3O(6+x) single crystals

    Get PDF
    The temperature dependence of the lower critical field in YBa2Cu3O(6+x) single crystals was determined by magnetization measurements with the applied field parallel and perpendicular to the c-axis. Results are compared with data from the literature and fitted to Ginzberg-Landau equations by assuming a linear dependence of the parameter kappa on temperature. A value of 7 plus or minus 2 kOe was estimated for the thermodynamic critical field at T = O by comparison of calculated H (sub c2) values with experimental data from the literature

    Measurement of H(sub c1) in a single crystal of YBa2Cu3O7 with low pinning

    Get PDF
    The measurement of H(sub c1) in barium yttrium copper oxide (BYCO) is often ambiguous because the presence of large pinning forces makes it difficult to discern exactly where the first deviation from linearity occurs. In addition there are complications because demagnetizing factors are often not well known. By utilizing a single crystal of YBCO with a nearly cubic shape, the uncertainty in the demagnetizing factor was minimized. In addition, the crystal used exhibited a very small amount of pinning with H applied perpendicular to the c axis, and a sharp break in the initial magnetization vs. field curve could be observed over a wide range of temperature. This allowed a precise determination of H(sub c1). The measured values of H(sub c1) could be well described by the Abrikosov relation with a Ginzburg-Landau parameter which varied linearly with temperature

    Voluntary Funding for Generic Advertising Using a Provision Point Mechanism: An Experimental Analysis of Option Assurance

    Get PDF
    The mandatory nature of generic advertising funding remains a contentious issue. Theoretically and in laboratory environments, a provision point mechanism with a money-back guarantee offers an attractive voluntary alternative to the standard voluntary contribution mechanisms, yet in practice, few examples of multiple-round provision point mechanisms exist. A practical concern with applying these mechanisms is that even a slight shortfall in contributions relative to the designated funding threshold in one period would engender an irreversible shutdown of administrative capacity with negative consequences for subsequent periods. This paper uses experimental economics to test new two-threshold provision point mechanisms in the context of check-off programs for funding commodity marketing programs that would separately fund the minimum administrative capacity and the more costly full marketing program. In these mechanisms, even if a funding shortfall occurs for the full marketing program, the low threshold can maintain the administrative capacity and retain the option for future funding of advertising. We demonstrate that providing such "option assurance" does not lead to a decrease in overall contributions and, in some settings, can increase producer surplus.Marketing,

    The source of Saturn electrostatic discharges: Atmospheric storms

    Get PDF
    Important properties of the recently discovered Saturn electrostatic discharges are entirely consistent with an extended lightning storm system in Saturn's atmosphere. The presently favored B-ring location is ruled out
    corecore