8,742 research outputs found

    Chiral 3Ď€\pi-exchange NN-potentials: Results for dominant next-to-leading order contributions

    Full text link
    We calculate in (two-loop) chiral perturbation theory the local NN-potentials generated by the three-pion exchange diagrams with one insertion from the second order chiral effective pion-nucleon Lagrangian proportional to the low-energy constants c1,2,3,4c_{1,2,3,4}. The resulting isoscalar central potential vanishes identically. In most cases these 3π3\pi-exchange potentials are larger than the ones generated by the diagrams involving only leading order vertices due to the large values of c3,4c_{3,4} (which mainly represent virtual Δ\Delta-excitation). A similar feature has been observed for the chiral 2π2\pi-exchange. We also give suitable (double-integral) representations for the spin-spin and tensor potentials generated by the leading-order diagrams proportional to gA6g_A^6 involving four nucleon propagators. In these cases the Cutkosky rule cannot be used to calculate the spectral-functions in the infinite nucleon mass limit since the corresponding mass-spectra start with a non-vanishing value at the 3π3\pi-threshold. Altogether, one finds that chiral 3π3\pi-exchange leads to small corrections in the region r≥1.4r\geq 1.4 fm where 1π1\pi- and chiral 2π2\pi-exchange alone provide a very good strong NN-force as shown in a recent analysis of the low-energy pp-scattering data-base.Comment: 11 pages, 7 figures, to be published in The Physical Review

    Chiral π\pi-exchange NN-potentials: Results for diagrams proportional to g_A^4 and g_A^6

    Full text link
    We calculate in (two-loop) chiral perturbation theory the local NN-potentials generated by the three-pion exchange diagrams proportional to g_A^4 and g_A^6. Surprisingly, we find that the total isoscalar central 3Ď€3\pi-exchange potential vanishes identically. The individually largest 3Ď€3\pi-exchange potentials are of isoscalar spin-spin, isovector central and isoscalar tensor type. For these potentials simple analytical expressions can be given. The strength of these dominant 3Ď€3\pi-exchange potentials at r=1.0 fm is 4.6 MeV, 2.9 MeV and 1.4 MeV, respectively. Furthermore, we observe that the spin-spin and tensor potentials due to the diagrams proportional to g_A^6 do not exist in the infinite nucleon mass limit.Comment: 8 pages, 5 figure

    Chiral 2Ď€2\pi-exchange NN-potentials: Two-loop contributions

    Get PDF
    We calculate in heavy baryon chiral perturbation theory the local NN-potentials generated by the two-pion exchange diagrams at two-loop order. We give explicit expressions for the mass-spectra (or imaginary parts) of the corresponding isoscalar and isovector central, spin-spin and tensor NN-amplitudes. We find from two-loop two-pion exchange a sizeable isoscalar central repulsion which amounts to 62.362.3 MeV at r=1.0r=1.0 fm. There is a similarly strong isovector central attraction which however originates mainly from the third order low energy constants dˉj\bar d_j entering the chiral πN\pi N-scattering amplitude. We also evaluate the one-loop 2π2\pi-exchange diagram with two second order chiral ππNN\pi \pi NN-vertices proportional to the low energy constants c1,2,3,4c_{1,2,3,4} as well as the first relativistic 1/M-correction to the 2π2\pi-exchange diagrams with one such vertex. The diagrammatic results presented here are relevant components of the chiral NN-potential at next-to-next-to-next-to-leading order.Comment: 6 pages, 2 figure

    From Point Defects in Graphene to Two-Dimensional Amorphous Carbon

    Full text link
    While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2-D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon membrane with a random arrangement of polygons, including four-membered carbon rings. We show how the transformation occurs step-by-step by nucleation and growth of low-energy multi-vacancy structures constructed of rotated hexagons and other polygons. Our observations, along with first-principles calculations, provide new insights to the bonding behavior of carbon and dynamics of defects in graphene. The created domains possess a band gap, which may open new possibilities for engineering graphene-based electronic devices.Comment: 10 pages, 10 figures including supplementary informatio

    Comparisons of spectra determined using detector atoms and spatial correlation functions

    Get PDF
    We show how two level atoms can be used to determine the local time dependent spectrum. The method is applied to a one dimensional cavity. The spectrum obtained is compared with the mode spectrum determined using spatially filtered second order correlation functions. The spectra obtained using two level atoms give identical results with the mode spectrum. One benefit of the method is that only one time averages are needed. It is also more closely related to a realistic measurement scheme than any other definition of a time dependent spectrum.Comment: 8 pages, 8 figure

    Onsager's Wien Effect on a Lattice

    Full text link
    The Second Wien Effect describes the non-linear, non-equilibrium response of a weak electrolyte in moderate to high electric fields. Onsager's 1934 electrodiffusion theory along with various extensions has been invoked for systems and phenomena as diverse as solar cells, surfactant solutions, water splitting reactions, dielectric liquids, electrohydrodynamic flow, water and ice physics, electrical double layers, non-Ohmic conduction in semiconductors and oxide glasses, biochemical nerve response and magnetic monopoles in spin ice. In view of this technological importance and the experimental ubiquity of such phenomena, it is surprising that Onsager's Wien effect has never been studied by numerical simulation. Here we present simulations of a lattice Coulomb gas, treating the widely applicable case of a double equilibrium for free charge generation. We obtain detailed characterisation of the Wien effect and confirm the accuracy of the analytical theories as regards the field evolution of the free charge density and correlations. We also demonstrate that simulations can uncover further corrections, such as how the field-dependent conductivity may be influenced by details of microscopic dynamics. We conclude that lattice simulation offers a powerful means by which to investigate system-specific corrections to the Onsager theory, and thus constitutes a valuable tool for detailed theoretical studies of the numerous practical applications of the Second Wien Effect.Comment: Main: 12 pages, 4 figures. Supplementary Information: 7 page

    Determination of the chiral coupling constants c3 and c4 in new pp and np partial-wave analyses

    Get PDF
    As a first result of two new partial-wave analyses, one of the pp and another one of the np scattering data below 500 MeV, we report a study of the long-range chiral two-pion exchange interaction which contains the chiral coupling constants c1, c3, and c4. By using as input a theoretical value for c1 we are able to determine in pp as well as in np scattering accurate values for c3 and c4. The values determined from the pp data and independently from the np data are in very good agreement, indicating the correctness of the chiral two-pion exchange interaction. The weighted averages are c3 = -4.78(10) / GeV and c4 = 3.96(22) / GeV, where the errors are statistical. The value of c3 is best determined from the pp data and that of c4 from the np data.Comment: 9 pages, 1 figure. Accepted for publication in Phys. Rev.

    Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium

    Get PDF
    We present detailed comparisons of the intracluster medium (ICM) in cosmological Eulerian cluster simulations with deep Chandra observations of nearby relaxed clusters. To assess the impact of galaxy formation, we compare two sets of simulations, one performed in the non-radiative regime and another with radiative cooling and several physical processes critical to various aspects of galaxy formation: star formation, metal enrichment and stellar feedback. We show that the observed ICM properties outside cluster cores are well-reproduced in the simulations that include cooling and star formation, while the non-radiative simulations predict an overall shape of the ICM profiles inconsistent with observations. In particular, we find that the ICM entropy in our runs with cooling is enhanced to the observed levels at radii as large as half of the virial radius. We also find that outside cluster cores entropy scaling with the mean ICM temperature in both simulations and Chandra observations is consistent with being self-similar within current error bars. We find that the pressure profiles of simulated clusters are also close to self-similar and exhibit little cluster-to-cluster scatter. The X-ray observable-total mass relations for our simulated sample agree with the Chandra measurements to \~10%-20% in normalization. We show that this systematic difference could be caused by the subsonic gas motions, unaccounted for in X-ray hydrostatic mass estimates. The much improved agreement of simulations and observations in the ICM profiles and scaling relations is encouraging and the existence of tight relations of X-ray observables, such as Yx, and total cluster mass and the simple redshift evolution of these relations hold promise for the use of clusters as cosmological probes.Comment: 14 pages, 6 figures. Matches version accepted to Ap

    The large-scale jet-powered radio nebula of Circinus X-1

    Get PDF
    We present multi-epoch observations of the radio nebula around the neutron star X-ray binary Circinus X-1 made at 1.4 and 2.5 GHz with the Australia Telescope Compact Array between October 2000 and September 2004. The nebula can be seen as a result of the interaction between the jet from the system and the interstellar medium and it is likely that we are actually looking toward the central X-ray binary system through the jet-powered radio lobe. The study of the nebula thus offers a unique opportunity to estimate for the first time using calorimetry the energetics of a jet from an object clearly identified as a neutron star. An extensive discussion on the energetics of the complex is presented: a first approach is based on the minimum energy estimation, while a second one employs a self-similar model of the interaction between the jets and the surrounding medium. The results suggest an age for the nebula of \leq 10^5 years and a corresponding time-averaged jet power \geq 10^{35} erg s^{-1}. During periodic flaring episodes, the instantaneous jet power may reach values of similar magnitude to the X-ray luminosity.Comment: Accepted to MNRA
    • …
    corecore