6 research outputs found

    Variability in thermal and phototactic preferences in Drosophila may reflect an adaptive bet‐hedging strategy

    Get PDF
    Organisms use various strategies to cope with fluctuating environmental conditions. In diversified bet‐hedging, a single genotype exhibits phenotypic heterogeneity with the expectation that some individuals will survive transient selective pressures. To date, empirical evidence for bet‐hedging is scarce. Here, we observe that individual Drosophila melanogaster flies exhibit striking variation in light‐ and temperature‐preference behaviors. With a modeling approach that combines real world weather and climate data to simulate temperature preference‐dependent survival and reproduction, we find that a bet‐hedging strategy may underlie the observed interindividual behavioral diversity. Specifically, bet‐hedging outcompetes strategies in which individual thermal preferences are heritable. Animals employing bet‐hedging refrain from adapting to the coolness of spring with increased warm‐seeking that inevitably becomes counterproductive in the hot summer. This strategy is particularly valuable when mean seasonal temperatures are typical, or when there is considerable fluctuation in temperature within the season. The model predicts, and we experimentally verify, that the behaviors of individual flies are not heritable. Finally, we model the effects of historical weather data, climate change, and geographic seasonal variation on the optimal strategies underlying behavioral variation between individuals, characterizing the regimes in which bet‐hedging is advantageous

    Systematic exploration of unsupervised methods for mapping behavior

    No full text
    Raw data and raw movies accompanying initial publicatio

    Systematic exploration of unsupervised methods for mapping behavior

    No full text
    <p>Raw data and raw movies accompanying initial publication</p

    Neuronal control of locomotor handedness in Drosophila

    No full text

    Hemolytic uremic syndrome as the presenting manifestation of WT1 mutation and Denys-Drash syndrome: a case report

    No full text
    Abstract Background Hemolytic uremic syndrome (HUS) can occur as a primary process due to mutations in complement genes or secondary to another underlying disease. HUS sometimes occurs in the setting of glomerular diseases, and it has been described in association with Denys-Drash syndrome (DDS), which is characterized by the triad of abnormal genitourinary development; a pathognomonic glomerulopathy, diffuse mesangial sclerosis; and the development of Wilms tumor. Case presentation We report the case of a 46, XX female infant who presented with HUS and biopsy-proven thrombotic microangiopathy. Next generation sequencing of genes with known mutations causative of atypical HUS found that she was homozygous for the Complement Factor H H3 haplotype and heterozygous for a variant of unknown significance in the DGKE gene. Whole exome sequencing identified a de novo heterozygous WT1 c.1384C > T; p.R394W mutation, which is classically associated with Denys-Drash syndrome (DDS). At the time of bilateral nephrectomy five months after her initial biopsy, she had diffuse mesangial sclerosis, typical of Denys-Drash syndrome, without evidence of thrombotic microangiopathy. Conclusion This unique case highlights HUS as a rare but important manifestation of WT1 mutation and provides new insight into the genetics underlying this association
    corecore