144 research outputs found

    An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model

    Get PDF
    Lithium-ion batteries are widely adopted as the power supplies for electric vehicles. A key but challenging issue is to achieve optimal battery charging, while taking into account of various constraints for safe, efficient and reliable operation. In this paper, a triple-objective function is first formulated for battery charging based on a coupled thermoelectric model. An advanced optimal charging strategy is then proposed to develop the optimal constant-current-constant-voltage (CCCV) charge current profile, which gives the best trade-off among three conflicting but important objectives for battery management. To be specific, a coupled thermoelectric battery model is first presented. Then, a specific triple-objective function consisting of three objectives, namely charging time, energy loss, and temperature rise (both the interior and surface), is proposed. Heuristic methods such as Teaching-learning-based-optimization (TLBO) and particle swarm optimization (PSO) are applied to optimize the triple-objective function, and their optimization performances are compared. The impacts of the weights for different terms in the objective function are then assessed. Experimental results show that the proposed optimal charging strategy is capable of offering desirable effective optimal charging current profiles and a proper trade-off among the conflicting objectives. Further, the proposed optimal charging strategy can be easily extended to other battery types

    Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries

    Get PDF
    Battery calendar aging prediction is of extreme importance for developing durable electric vehicles. This paper derives machine learning-enabled calendar aging prediction for lithium-ion batteries. Specifically, the Gaussian process regression (GPR) technique is employed to capture the underlying mapping among capacity, storage temperature, and SOC. By modifying the isotropic kernel function with an automatic relevance determination (ARD) structure, high relevant input features can be effectively extracted to improve prediction accuracy and robustness. Experimental battery calendar aging data from nine storage cases are utilized for model training, validation, and comparison, which is more meaningful and practical than using the data from a single condition. Illustrative results demonstrate that the proposed GPR model with ARD Matern32 (M32) kernel outperforms other counterparts and can achieve reliable prediction results for all storage cases. Even for the partial-data training test, multi-step prediction test and accelerated aging training test, the proposed ARD-based GPR model is still capable of excavating the useful features, therefore offering good generalization ability and accurate prediction results for calendar aging under various storage conditions. This is the first known data-driven application that utilizes the GPR with ARD kernel to perform battery calendar aging prognosis

    Multi-Level Data-Driven Battery Management: From Internal Sensing to Big Data Utilization

    Get PDF
    Battery management system (BMS) is essential for the safety and longevity of lithium-ion battery (LIB) utilization. With the rapid development of new sensing techniques, artificial intelligence and the availability of huge amounts of battery operational data, data-driven battery management has attracted ever-widening attention as a promising solution. This review article overviews the recent progress and future trend of data-driven battery management from a multi-level perspective. The widely-explored data-driven methods relying on routine measurements of current, voltage, and surface temperature are reviewed first. Within a deeper understanding and at the microscopic level, emerging management strategies with multi-dimensional battery data assisted by new sensing techniques have been reviewed. Enabled by the fast growth of big data technologies and platforms, the efficient use of battery big data for enhanced battery management is further overviewed. This belongs to the upper and the macroscopic level of the data-driven BMS framework. With this endeavor, we aim to motivate new insights into the future development of next-generation data-driven battery management

    Online Estimation of ARW Coefficient of Fiber Optic Gyro

    Get PDF
    As a standard method for noise analysis of fiber optic gyro (FOG), Allan variance has too large offline computational burden and data storages to be applied to online estimation. To overcome the barriers, the state space model is firstly established for FOG. Then the Sage-husa adaptive Kalman filter (SHAKF) is introduced in this field. Through recursive calculation of measurement noise covariance matrix, SHAKF can avoid the storage of large amounts of history data. However, the precision and stability of this method are still the primary matters that needed to be addressed. Based on this point, a new online method for estimation of the coefficient of angular random walk is proposed. In the method, estimator of measurement noise is constructed by the recursive form of Allan variance at the shortest sampling time. Then the estimator is embedded into the SHAKF framework resulting in a new adaptive filter. The estimations of measurement noise variance and Kalman filter are independent of each other in this method. Therefore, it can address the problem of filtering divergence and precision degrading effectively. Test results of both digital simulation and experimental data of FOG verify the validity and feasibility of the proposed method

    Jailbreaker: Automated Jailbreak Across Multiple Large Language Model Chatbots

    Full text link
    Large Language Models (LLMs) have revolutionized Artificial Intelligence (AI) services due to their exceptional proficiency in understanding and generating human-like text. LLM chatbots, in particular, have seen widespread adoption, transforming human-machine interactions. However, these LLM chatbots are susceptible to "jailbreak" attacks, where malicious users manipulate prompts to elicit inappropriate or sensitive responses, contravening service policies. Despite existing attempts to mitigate such threats, our research reveals a substantial gap in our understanding of these vulnerabilities, largely due to the undisclosed defensive measures implemented by LLM service providers. In this paper, we present Jailbreaker, a comprehensive framework that offers an in-depth understanding of jailbreak attacks and countermeasures. Our work makes a dual contribution. First, we propose an innovative methodology inspired by time-based SQL injection techniques to reverse-engineer the defensive strategies of prominent LLM chatbots, such as ChatGPT, Bard, and Bing Chat. This time-sensitive approach uncovers intricate details about these services' defenses, facilitating a proof-of-concept attack that successfully bypasses their mechanisms. Second, we introduce an automatic generation method for jailbreak prompts. Leveraging a fine-tuned LLM, we validate the potential of automated jailbreak generation across various commercial LLM chatbots. Our method achieves a promising average success rate of 21.58%, significantly outperforming the effectiveness of existing techniques. We have responsibly disclosed our findings to the concerned service providers, underscoring the urgent need for more robust defenses. Jailbreaker thus marks a significant step towards understanding and mitigating jailbreak threats in the realm of LLM chatbots

    Data-based interpretable modeling for property forecasting and sensitivity analysis of Li-ion battery electrode

    Get PDF
    Lithium-ion batteries have become one of the most promising technologies for speeding up clean automotive applications, where electrode plays a pivotal role in determining battery performance. Due to the strongly-coupled and highly complex processes to produce battery electrode, it is imperative to develop an effective solution that can predict the properties of battery electrode and perform reliable sensitivity analysis on the key features and parameters during the production process. This paper proposes a novel tree boosting model-based framework to analyze and predict how the battery electrode properties vary with respect to parameters during the early production stage. Three data-based interpretable models including AdaBoost, LPBoost, and TotalBoost are presented and compared. Four key parameters including three slurry feature variables and one coating process parameter are analyzed to quantify their effects on both mass loading and porosity of battery electrode. The results demonstrate that the proposed tree model-based framework is capable of providing efficient quantitative analysis on the importance and correlation of the related parameters and producing satisfying early-stage prediction of battery electrode properties. These can benefit a deep understanding of battery electrodes and facilitate to optimizing battery electrode design for automotive applications

    Large Language Models for Software Engineering: A Systematic Literature Review

    Full text link
    Large Language Models (LLMs) have significantly impacted numerous domains, notably including Software Engineering (SE). Nevertheless, a well-rounded understanding of the application, effects, and possible limitations of LLMs within SE is still in its early stages. To bridge this gap, our systematic literature review takes a deep dive into the intersection of LLMs and SE, with a particular focus on understanding how LLMs can be exploited in SE to optimize processes and outcomes. Through a comprehensive review approach, we collect and analyze a total of 229 research papers from 2017 to 2023 to answer four key research questions (RQs). In RQ1, we categorize and provide a comparative analysis of different LLMs that have been employed in SE tasks, laying out their distinctive features and uses. For RQ2, we detail the methods involved in data collection, preprocessing, and application in this realm, shedding light on the critical role of robust, well-curated datasets for successful LLM implementation. RQ3 allows us to examine the specific SE tasks where LLMs have shown remarkable success, illuminating their practical contributions to the field. Finally, RQ4 investigates the strategies employed to optimize and evaluate the performance of LLMs in SE, as well as the common techniques related to prompt optimization. Armed with insights drawn from addressing the aforementioned RQs, we sketch a picture of the current state-of-the-art, pinpointing trends, identifying gaps in existing research, and flagging promising areas for future study

    Prompt Injection attack against LLM-integrated Applications

    Full text link
    Large Language Models (LLMs), renowned for their superior proficiency in language comprehension and generation, stimulate a vibrant ecosystem of applications around them. However, their extensive assimilation into various services introduces significant security risks. This study deconstructs the complexities and implications of prompt injection attacks on actual LLM-integrated applications. Initially, we conduct an exploratory analysis on ten commercial applications, highlighting the constraints of current attack strategies in practice. Prompted by these limitations, we subsequently formulate HouYi, a novel black-box prompt injection attack technique, which draws inspiration from traditional web injection attacks. HouYi is compartmentalized into three crucial elements: a seamlessly-incorporated pre-constructed prompt, an injection prompt inducing context partition, and a malicious payload designed to fulfill the attack objectives. Leveraging HouYi, we unveil previously unknown and severe attack outcomes, such as unrestricted arbitrary LLM usage and uncomplicated application prompt theft. We deploy HouYi on 36 actual LLM-integrated applications and discern 31 applications susceptible to prompt injection. 10 vendors have validated our discoveries, including Notion, which has the potential to impact millions of users. Our investigation illuminates both the possible risks of prompt injection attacks and the possible tactics for mitigation

    Chloroplast Protein 12 Expression Alters Growth and Chilling Tolerance in Tropical Forage Stylosanthes guianensis (Aublet) Sw

    Get PDF
    Stylosanthes guianensis (Aublet) Sw. is a tropical forage legume with soil acidity tolerance and excellent adaptation to infertile soils, but sensitive to chilling. To understand the molecular responses of S. guianensis to chilling, differentially expressed genes between a chilling tolerant mutant 7–1 and the wild type were identified using suppression subtractive hybridization, and eight of them were confirmed and the regulation pattern were analyzed using quantitative reverse transcription PCR (qRT-PCR). Chloroplast protein 12 (CP12) functions to regulate the Calvin cycle by forming a ternary complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK). SgCP12 transcript was induced by chilling in both plants, and higher levels were observed in 7–1 than in the wild type, implying a potential role of SgCP12 in chilling tolerance. To confirm this, transgenic S. guianensis plants over-expressing or down-regulating SgCP12 were generated, respectively. Higher Fv/Fm and survival rate and lower ion leakage were observed in transgenic plants overexpressing SgCP12 as compared with the wild type after chilling treatment, while lower Fv/Fm and survival rate and higher ion leakage were found in SgCP12 antisense plants. SgCP12 overexpression plants showed promoted growth with increased plant height and fresh weight, while the antisense plants exhibited reduced growth with decreased plant height and fresh weight as compared with the wild type. The results indicated that regulation of SgCP12 expression alters plant growth and chilling tolerance in S. guianensis. In addition, higher levels of net photosynthetic rate (Pn), GAPDH and PRK activities were observed in SgCP12 overexpression transgenic plants, while lower levels in antisense plants than in the wild type under both control and chilling conditions, indicating that altered activities of GAPDH and PRK were associated with the changed Pn in transgenic S. guianensis. Our results suggest that SgCP12 regulates GAPDH and PRK activities, Pn, and chilling tolerance in S. guianensis
    • …
    corecore